####R语言 随机森林 变量重要性可视化
install.packages("randomForest")
install.packages("tidyverse")
library(randomForest)
library(tidyverse)
install.packages("devtools")
library(conflicted)
library(dplyr)
filter(mtcars, cyl == 8)
dplyr::filter(mtcars, am & cyl == 8)
library(dplyr)
conflict_scout()
data("mtcars")
?mtcars
View(mtcars)
# 数据预处理
mtcars = mtcars %>%
mutate(vs = as.factor(vs),
am = as.factor(am) ,
vs = fct_recode(vs,
'V-shaped'='0' ,
'straight'='1'),
am = fct_recode(am,
"automatic'='0' ,
'manual'='1' ))
#构建随机森林
set.seed(1)
RF = randomForest(mpg~.,data = mtcars)
#可视化变量重要性
RF$importance %>%
as.data.frame() %>%
rownames_to_column(var = 'Predictor&#