1.环境准备
GPU设备: A10, 3090, V100, A100均可.
代码语言:javascript
复制
#设置pip全局镜像 (加速下载)
pip config set global.index-url https://mirrors.aliyun.com/pypi/simple/
#安装ms-swift
pip install 'ms-swift[llm]' -U
#vllm与cuda版本有对应关系,请按照`https://docs.vllm.ai/en/latest/getting_started/installation.html`选择版本
pip install vllm -U
pip install openai -U
#环境对齐 (通常不需要运行. 如果你运行错误, 可以跑下面的代码, 仓库使用最新环境测试)
pip install -r requirements/framework.txt -U
pip install -r requirements/llm.txt -U
2.推理加速
vllm不支持bnb量化的模型. vllm支持的模型可以查看支持的模型.
2.1 qwen-7b-chat
代码语言:javascript
复制
import os
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
from swift.llm import (
ModelType, get_vllm_engine, get_default_template_type,
get_template, inference_vllm
)
model_type = ModelType.qwen_7b_chat
llm_engine = get_vllm_engine(model_type)
template_type = get_default_template_type(model_type)
template = get_template(template_type, llm_engine.hf_tokenizer)
#与`transformers.GenerationConfig`类似的接口
llm_engine.generation_config.max_new_tokens = 256
request_list = [{'query': '你好!'}, {'query': '浙江的省会在哪?'}]
resp_list = inference_vllm(llm_engine, template, request_list)
for request, resp in zip(request_list, resp_list):
print(f"query: {request['query']}")
print(f"response: {resp['response']}")
history1 = resp_list[1]['history']
request_list = [{'query': '这有什么好吃的', 'history': history1}]
resp_list = inference_vllm(llm_engine, template, request_list)
for request, resp in zip(request_list, resp_list):
print(f"query: {request['query']}")
print(f"response: {resp['response']}")
print(f"history: {resp['history']}")
"""Out[0]
query: 你好!
response: 你好!很高兴为你服务。有什么我可以帮助你的吗?
query: 浙江的省会在哪?
response: 浙江省会是杭州市。
query: 这有什么好吃的
response: 杭州是一个美食之城,拥有许多著名的菜肴和小吃,例如西湖醋鱼、东坡肉、叫化童子鸡等。此外,杭州还有许多小吃店,可以品尝到各种各样的本地美食。
history: [('浙江的省会在哪?', '浙江省会是杭州市。'), ('这有什么好吃的', '杭州是一个美食之城,拥有许多著名的菜肴和小吃,例如西湖醋鱼、东坡肉、叫化童子鸡等。此外,杭州还有许多小吃店,可以品尝到各种各样的本地美食。')]
"""
2.2 流式输出
代码语言:javascript
复制
import os
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
from swift.llm import (
ModelType, get_vllm_engine, get_default_template_type,
get_template, inference_stream_vllm
)
model_type = ModelType.qwen_7b_chat
llm_engine = get_vllm_engine(model_type)
template_type = get_default_template_type(model_type)
template = get_template(template_type, llm_engine.hf_tokenizer)
#与`transformers.GenerationConfig`类似的接口
llm_engine.generation_config.max_new_tokens = 256
request_list = [{'query': '你好!'}, {'query': '浙江的省会在哪?'}]
gen = inference_stream_vllm(llm_engine, template, request_list)
query_list = [request['query'] for request in request_list]
print(f"query_list: {query_list}")
for resp_list in gen:
response_list = [resp['response'] for resp in resp_list]
print(f'response_list: {response_list}')
history1 = resp_list[1]['history']
request_list = [{'query': '这有什么好吃的', 'history': history1}]
gen = inference_stream_vllm(llm_engine, template, request_list)
query = request_list[0]['query']
print(f"query: {query}")
for resp_list in gen:
response = resp_list[0]['response']
print(f'response: {response}')
history = resp_list[0]['history']
print(f'history: {history}')
"""Out[0]
query_list: ['你好!', '浙江的省会在哪?']
...
response_list: ['你好!很高兴为你服务。有什么我可以帮助你的吗?', '浙江省会是杭州市。']
query: 这有什么好吃的
...
response: 杭州是一个美食之城,拥有许多著名的菜肴和小吃,例如西湖醋鱼、东坡肉、叫化童子鸡等。此外,杭州还有许多小吃店,可以品尝到各种各样的本地美食。
history: [('浙江的省会在哪?', '浙江省会是杭州市。'), ('这有什么好吃的', '杭州是一个美食之城,拥有许多著名的菜肴和小吃,例如西湖醋鱼、东坡肉、叫化童子鸡等。此外,杭州还有许多小吃店,可以品尝到各种各样的本地美食。')]
"""
2.3 chatglm3
代码语言:javascript
复制
import os
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
from swift.llm import (
ModelType, get_vllm_engine, get_default_template_type,
get_template, inference_vllm
)
model_type = ModelType.chatglm3_6b
llm_engine = get_vllm_engine(model_type)
template_type = get_default_template_type(model_type)
template = get_template(template_type, llm_engine.hf_tokenizer)
#与`transformers.GenerationConfig`类似的接口
llm_engine.generation_config.max_new_tokens = 256
request_list = [{'query': '你好!'}, {'query': '浙江的省会在哪?'}]
resp_list = inference_vllm(llm_engine, template, request_list)
for request, resp in zip(request_list, resp_list):
print(f"query: {request['query']}")
print(f"response: {resp['response']}")
history1 = resp_list[1]['history']
request_list = [{'query': '这有什么好吃的', 'history': history1}]
resp_list = inference_vllm(llm_engine, template, request_list)
for request, resp in zip(request_list, resp_list):
print(f"query: {request['query']}")
print(f"response: {resp['response']}")
print(f"history: {resp['history']}")
"""Out[0]
query: 你好!
response: 您好,我是人工智能助手。很高兴为您服务!请问有什么问题我可以帮您解答?
query: 浙江的省会在哪?
response: 浙江的省会是杭州。
query: 这有什么好吃的
response: 浙江有很多美食,其中一些非常有名的包括杭州的龙井虾仁、东坡肉、西湖醋鱼、叫化童子鸡等。另外,浙江还有很多特色小吃和糕点,比如宁波的汤团、年糕,温州的炒螃蟹、温州肉圆等。
history: [('浙江的省会在哪?', '浙江的省会是杭州。'), ('这有什么好吃的', '浙江有很多美食,其中一些非常有名的包括杭州的龙井虾仁、东坡肉、西湖醋鱼、叫化童子鸡等。另外,浙江还有很多特色小吃和糕点,比如宁波的汤团、年糕,温州的炒螃蟹、温州肉圆等。')]
"""
2.4 使用CLI
代码语言:javascript
复制
#qwen
CUDA_VISIBLE_DEVICES=0 swift infer --model_type qwen-7b-chat --infer_backend vllm
#yi
CUDA_VISIBLE_DEVICES=0 swift infer --model_type yi-6b-chat --infer_backend vllm
#gptq
CUDA_VISIBLE_DEVICES=0 swift infer --model_type qwen1half-7b-chat-int4 --infer_backend vllm
2.5 微调后的模型
单样本推理:
使用LoRA进行微调的模型你需要先merge-lora, 产生完整的checkpoint目录.
使用全参数微调的模型可以无缝使用VLLM进行推理加速.
代码语言:javascript
复制
import os
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
from swift.llm import (
ModelType, get_vllm_engine, get_default_template_type,
get_template, inference_vllm
)
ckpt_dir = 'vx-xxx/checkpoint-100-merged'
model_type = ModelType.qwen_7b_chat
template_type = get_default_template_type(model_type)
llm_engine = get_vllm_engine(model_type, model_id_or_path=ckpt_dir)
tokenizer = llm_engine.hf_tokenizer
template = get_template(template_type, tokenizer)
query = '你好'
resp = inference_vllm(llm_engine, template, [{'query': query}])[0]
print(f"response: {resp['response']}")
print(f"history: {resp['history']}")
使用CLI:
代码语言:javascript
复制
#merge LoRA增量权重并使用vllm进行推理加速
#如果你需要量化, 可以指定`--quant_bits 4`.
CUDA_VISIBLE_DEVICES=0 swift export \
--ckpt_dir 'xxx/vx-xxx/checkpoint-xxx' --merge_lora true
#使用数据集评估
CUDA_VISIBLE_DEVICES=0 swift infer \
--ckpt_dir 'xxx/vx-xxx/checkpoint-xxx-merged' \
--infer_backend vllm \
--load_dataset_config true \
#人工评估
CUDA_VISIBLE_DEVICES=0 swift infer \
--ckpt_dir 'xxx/vx-xxx/checkpoint-xxx-merged' \
--infer_backend vllm \
3.Web-UI加速
3.1原始模型
代码语言:javascript
复制
CUDA_VISIBLE_DEVICES=0 swift app-ui --model_type qwen-7b-chat --infer_backend vllm
3.2 微调后模型
代码语言:javascript
复制
#merge LoRA增量权重并使用vllm作为backend构建app-ui
#如果你需要量化, 可以指定`--quant_bits 4`.
CUDA_VISIBLE_DEVICES=0 swift export \
--ckpt_dir 'xxx/vx-xxx/checkpoint-xxx' --merge_lora true
CUDA_VISIBLE_DEVICES=0 swift app-ui --ckpt_dir 'xxx/vx-xxx/checkpoint-xxx-merged' --infer_backend vllm
4.部署
swift使用VLLM作为推理后端, 并兼容openai的API样式.
服务端的部署命令行参数可以参考: deploy命令行参数.
客户端的openai的API参数可以参考: https://platform.openai.com/docs/api-reference/introduction.
4.1原始模型
qwen-7b-chat
服务端:
代码语言:javascript
复制
CUDA_VISIBLE_DEVICES=0 swift deploy --model_type qwen-7b-chat
#多卡部署
RAY_memory_monitor_refresh_ms=0 CUDA_VISIBLE_DEVICES=0,1,2,3 swift deploy --model_type qwen-7b-chat --tensor_parallel_size 4
客户端:
测试:
代码语言:javascript
复制
curl http://localhost:8000/v1/chat/completions \
-H "Content-Type: application/json" \
-d '{
"model": "qwen-7b-chat",
"messages": [{"role": "user", "content": "晚上睡不着觉怎么办?"}],
"max_tokens": 256,
"temperature": 0
}'
使用swift:
代码语言:javascript
复制
from swift.llm import get_model_list_client, XRequestConfig, inference_client
model_list = get_model_list_client()
model_type = model_list.data[0].id
print(f'model_type: {model_type}')
query = '浙江的省会在哪里?'
request_config = XRequestConfig(seed=42)
resp = inference_client(model_type, query, request_config=request_config)
response = resp.choices[0].message.content
print(f'query: {query}')
print(f'response: {response}')
history = [(query, response)]
query = '这有什么好吃的?'
request_config = XRequestConfig(stream=True, seed=42)
stream_resp = inference_client(model_type, query, history, request_config=request_config)
print(f'query: {query}')
print('response: ', end='')
for chunk in stream_resp:
print(chunk.choices[0].delta.content, end='', flush=True)
print()
"""Out[0]
model_type: qwen-7b-chat
query: 浙江的省会在哪里?
response: 浙江省的省会是杭州市。
query: 这有什么好吃的?
response: 杭州有许多美食,例如西湖醋鱼、东坡肉、龙井虾仁、叫化童子鸡等。此外,杭州还有许多特色小吃,如西湖藕粉、杭州小笼包、杭州油条等。
"""
使用openai:
代码语言:javascript
复制
from openai import OpenAI
client = OpenAI(
api_key='EMPTY',
base_url='http://localhost:8000/v1',
)
model_type = client.models.list().data[0].id
print(f'model_type: {model_type}')
query = '浙江的省会在哪里?'
messages = [{
'role': 'user',
'content': query
}]
resp = client.chat.completions.create(
model=model_type,
messages=messages,
seed=42)
response = resp.choices[0].message.content
print(f'query: {query}')
print(f'response: {response}')
#流式
messages.append({'role': 'assistant', 'content': response})
query = '这有什么好吃的?'
messages.append({'role': 'user', 'content': query})
stream_resp = client.chat.completions.create(
model=model_type,
messages=messages,
stream=True,
seed=42)
print(f'query: {query}')
print('response: ', end='')
for chunk in stream_resp:
print(chunk.choices[0].delta.content, end='', flush=True)
print()
"""Out[0]
model_type: qwen-7b-chat
query: 浙江的省会在哪里?
response: 浙江省的省会是杭州市。
query: 这有什么好吃的?
response: 杭州有许多美食,例如西湖醋鱼、东坡肉、龙井虾仁、叫化童子鸡等。此外,杭州还有许多特色小吃,如西湖藕粉、杭州小笼包、杭州油条等。
"""
qwen-7b
服务端:
代码语言:javascript
复制
CUDA_VISIBLE_DEVICES=0 swift deploy --model_type qwen-7b
#多卡部署
RAY_memory_monitor_refresh_ms=0 CUDA_VISIBLE_DEVICES=0,1,2,3 swift deploy --model_type qwen-7b --tensor_parallel_size 4
客户端:
测试:
代码语言:javascript
复制
curl http://localhost:8000/v1/completions \
-H "Content-Type: application/json" \
-d '{
"model": "qwen-7b",
"prompt": "浙江 -> 杭州\n安徽 -> 合肥\n四川 ->",
"max_tokens": 32,
"temperature": 0.1,
"seed": 42
}'
使用swift:
代码语言:javascript
复制
from swift.llm import get_model_list_client, XRequestConfig, inference_client
model_list = get_model_list_client()
model_type = model_list.data[0].id
print(f'model_type: {model_type}')
query = '浙江 -> 杭州\n安徽 -> 合肥\n四川 ->'
request_config = XRequestConfig(max_tokens=32, temperature=0.1, seed=42)
resp = inference_client(model_type, query, request_config=request_config)
response = resp.choices[0].text
print(f'query: {query}')
print(f'response: {response}')
request_config.stream = True
stream_resp = inference_client(model_type, query, request_config=request_config)
print(f'query: {query}')
print('response: ', end='')
for chunk in stream_resp:
print(chunk.choices[0].text, end='', flush=True)
print()
"""Out[0]
model_type: qwen-7b
query: 浙江 -> 杭州
安徽 -> 合肥
四川 ->
response: 成都
广东 -> 广州
江苏 -> 南京
浙江 -> 杭州
安徽 -> 合肥
四川 -> 成都
query: 浙江 -> 杭州
安徽 -> 合肥
四川 ->
response: 成都
广东 -> 广州
江苏 -> 南京
浙江 -> 杭州
安徽 -> 合肥
四川 -> 成都
"""
使用openai:
代码语言:javascript
复制
from openai import OpenAI
client = OpenAI(
api_key='EMPTY',
base_url='http://localhost:8000/v1',
)
model_type = client.models.list().data[0].id
print(f'model_type: {model_type}')
query = '浙江 -> 杭州\n安徽 -> 合肥\n四川 ->'
kwargs = {'model': model_type, 'prompt': query, 'seed': 42, 'temperature': 0.1, 'max_tokens': 32}
resp = client.completions.create(**kwargs)
response = resp.choices[0].text
print(f'query: {query}')
print(f'response: {response}')
#流式
stream_resp = client.completions.create(stream=True, **kwargs)
response = resp.choices[0].text
print(f'query: {query}')
print('response: ', end='')
for chunk in stream_resp:
print(chunk.choices[0].text, end='', flush=True)
print()
"""Out[0]
model_type: qwen-7b
query: 浙江 -> 杭州
安徽 -> 合肥
四川 ->
response: 成都
广东 -> 广州
江苏 -> 南京
浙江 -> 杭州
安徽 -> 合肥
四川 -> 成都
query: 浙江 -> 杭州
安徽 -> 合肥
四川 ->
response: 成都
广东 -> 广州
江苏 -> 南京
浙江 -> 杭州
安徽 -> 合肥
四川 -> 成都
"""
4.2 微调后模型
服务端:
代码语言:javascript
复制
#merge LoRA增量权重并部署
#如果你需要量化, 可以指定`--quant_bits 4`.
CUDA_VISIBLE_DEVICES=0 swift export \
--ckpt_dir 'xxx/vx-xxx/checkpoint-xxx' --merge_lora true
CUDA_VISIBLE_DEVICES=0 swift deploy --ckpt_dir 'xxx/vx-xxx/checkpoint-xxx-merged'
客户端示例代码同原始模型.
4.3 多LoRA部署
目前pt方式部署模型已经支持peft>=0.10.0
进行多LoRA部署,具体方法为:
- 确保部署时
merge_lora
为False
- 使用
--lora_modules
参数, 可以查看命令行文档 - 推理时指定lora tuner的名字到模型字段
举例:
代码语言:javascript
复制
#假设从llama3-8b-instruct训练了一个名字叫卡卡罗特的LoRA模型
#服务端
swift deploy --ckpt_dir /mnt/ckpt-1000 --infer_backend pt --lora_modules my_tuner=/mnt/my-tuner
#会加载起来两个tuner,一个是`/mnt/ckpt-1000`的`default-lora`,一个是`/mnt/my-tuner`的`my_tuner`
#客户端
curl http://localhost:8000/v1/chat/completions -H "Content-Type: application/json" -d '{
"model": "my-tuner",
"messages": [{"role": "user", "content": "who are you?"}],
"max_tokens": 256,
"temperature": 0
}'
#resp: 我是卡卡罗特...
#如果指定mode='llama3-8b-instruct',则返回I'm llama3...,即原模型的返回值
[!NOTE]
--ckpt_dir
参数如果是个lora路径,则原来的default会被加载到default-lora的tuner上,其他的tuner需要通过lora_modules
自行加载
5. VLLM & LoRA
VLLM & LoRA支持的模型可以查看: https://docs.vllm.ai/en/latest/models/supported_models.html
5.1 准备LoRA
代码语言:javascript
复制
#Experimental environment: 4 * A100
#4 * 30GB GPU memory
CUDA_VISIBLE_DEVICES=0,1,2,3 \
NPROC_PER_NODE=4 \
swift sft \
--model_type llama2-7b-chat \
--dataset sharegpt-gpt4-mini \
--train_dataset_sample 1000 \
--logging_steps 5 \
--max_length 4096 \
--learning_rate 5e-5 \
--warmup_ratio 0.4 \
--output_dir output \
--lora_target_modules ALL \
--self_cognition_sample 500 \
--model_name 小黄 'Xiao Huang' \
--model_author 魔搭 ModelScope \
将lora从swift格式转换成peft格式:
代码语言:javascript
复制
CUDA_VISIBLE_DEVICES=0 swift export \
--ckpt_dir output/llama2-7b-chat/vx-xxx/checkpoint-xxx \
--to_peft_format true
5.2 VLLM推理加速
推理:
代码语言:javascript
复制
CUDA_VISIBLE_DEVICES=0 swift infer \
--ckpt_dir output/llama2-7b-chat/vx-xxx/checkpoint-xxx-peft \
--infer_backend vllm \
--vllm_enable_lora true
运行结果:
代码语言:javascript
复制
"""
<<< who are you?
I am an artificial intelligence language model developed by ModelScope. I am designed to assist and communicate with users in a helpful and respectful manner. I can answer questions, provide information, and engage in conversation. How can I help you?
"""
单样本推理:
代码语言:javascript
复制
import os
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
import torch
from swift.llm import (
ModelType, get_vllm_engine, get_default_template_type,
get_template, inference_stream_vllm, LoRARequest, inference_vllm
)
lora_checkpoint = 'output/llama2-7b-chat/vx-xxx/checkpoint-xxx-peft'
lora_request = LoRARequest('default-lora', 1, lora_checkpoint)
model_type = ModelType.llama2_7b_chat
llm_engine = get_vllm_engine(model_type, torch.float16, enable_lora=True,
max_loras=1, max_lora_rank=16)
template_type = get_default_template_type(model_type)
template = get_template(template_type, llm_engine.hf_tokenizer)
#与`transformers.GenerationConfig`类似的接口
llm_engine.generation_config.max_new_tokens = 256
#use lora
request_list = [{'query': 'who are you?'}]
query = request_list[0]['query']
resp_list = inference_vllm(llm_engine, template, request_list, lora_request=lora_request)
response = resp_list[0]['response']
print(f'query: {query}')
print(f'response: {response}')
#no lora
gen = inference_stream_vllm(llm_engine, template, request_list)
query = request_list[0]['query']
print(f'query: {query}\nresponse: ', end='')
print_idx = 0
for resp_list in gen:
response = resp_list[0]['response']
print(response[print_idx:], end='', flush=True)
print_idx = len(response)
print()
"""
query: who are you?
response: I am an artificial intelligence language model developed by ModelScope. I can understand and respond to text-based questions and prompts, and provide information and assistance on a wide range of topics.
query: who are you?
response: Hello! I'm just an AI assistant, here to help you with any questions or tasks you may have. I'm designed to be helpful, respectful, and honest in my responses, and I strive to provide socially unbiased and positive answers. I'm not a human, but a machine learning model trained on a large dataset of text to generate responses to a wide range of questions and prompts. I'm here to help you in any way I can, while always ensuring that my answers are safe and respectful. Is there anything specific you'd like to know or discuss?
"""
5.3 部署
服务端:
代码语言:javascript
复制
CUDA_VISIBLE_DEVICES=0 swift deploy \
--ckpt_dir output/llama2-7b-chat/vx-xxx/checkpoint-xxx-peft \
--infer_backend vllm \
--vllm_enable_lora true
客户端:
测试:
代码语言:javascript
复制
curl http://localhost:8000/v1/chat/completions \
-H "Content-Type: application/json" \
-d '{
"model": "default-lora",
"messages": [{"role": "user", "content": "who are you?"}],
"max_tokens": 256,
"temperature": 0
}'
curl http://localhost:8000/v1/chat/completions \
-H "Content-Type: application/json" \
-d '{
"model": "llama2-7b-chat",
"messages": [{"role": "user", "content": "who are you?"}],
"max_tokens": 256,
"temperature": 0
}'
输出:
代码语言:javascript
复制
"""
{"model":"default-lora","choices":[{"index":0,"message":{"role":"assistant","content":"I am an artificial intelligence language model developed by ModelScope. I am designed to assist and communicate with users in a helpful, respectful, and honest manner. I can answer questions, provide information, and engage in conversation. How can I assist you?"},"finish_reason":"stop"}],"usage":{"prompt_tokens":141,"completion_tokens":53,"total_tokens":194},"id":"chatcmpl-fb95932dcdab4ce68f4be49c9946b306","object":"chat.completion","created":1710820459}
{"model":"llama2-7b-chat","choices":[{"index":0,"message":{"role":"assistant","content":" Hello! I'm just an AI assistant, here to help you with any questions or concerns you may have. I'm designed to provide helpful, respectful, and honest responses, while ensuring that my answers are socially unbiased and positive in nature. I'm not capable of providing harmful, unethical, racist, sexist, toxic, dangerous, or illegal content, and I will always do my best to explain why I cannot answer a question if it does not make sense or is not factually coherent. If I don't know the answer to a question, I will not provide false information. My goal is to assist and provide accurate information to the best of my abilities. Is there anything else I can help you with?"},"finish_reason":"stop"}],"usage":{"prompt_tokens":141,"completion_tokens":163,"total_tokens":304},"id":"chatcmpl-d867a3a52bb7451588d4f73e1df4ba95","object":"chat.completion","created":1710820557}
"""
使用openai:
代码语言:javascript
复制
from openai import OpenAI
client = OpenAI(
api_key='EMPTY',
base_url='http://localhost:8000/v1',
)
model_type_list = [model.id for model in client.models.list().data]
print(f'model_type_list: {model_type_list}')
query = 'who are you?'
messages = [{
'role': 'user',
'content': query
}]
resp = client.chat.completions.create(
model='default-lora',
messages=messages,
seed=42)
response = resp.choices[0].message.content
print(f'query: {query}')
print(f'response: {response}')
#流式
stream_resp = client.chat.completions.create(
model='llama2-7b-chat',
messages=messages,
stream=True,
seed=42)
print(f'query: {query}')
print('response: ', end='')
for chunk in stream_resp:
print(chunk.choices[0].delta.content, end='', flush=True)
print()
"""Out[0]
model_type_list: ['llama2-7b-chat', 'default-lora']
query: who are you?
response: I am an artificial intelligence language model developed by ModelScope. I am designed to assist and communicate with users in a helpful, respectful, and honest manner. I can answer questions, provide information, and engage in conversation. How can I assist you?
query: who are you?
response: Hello! I'm just an AI assistant, here to help you with any questions or concerns you may have. I'm designed to provide helpful, respectful, and honest responses, while ensuring that my answers are socially unbiased and positive in nature. I'm not capable of providing harmful, unethical, racist, sexist, toxic, dangerous, or illegal content, and I will always do my best to explain why I cannot answer a question if it does not make sense or is not factually coherent. If I don't know the answer to a question, I will not provide false information. Is there anything else I can help you with?
"""
information, and engage in conversation. How can I assist you?
query: who are you?
response: Hello! I'm just an AI assistant, here to help you with any questions or concerns you may have. I'm designed to provide helpful, respectful, and honest responses, while ensuring that my answers are socially unbiased and positive in nature. I'm not capable of providing harmful, unethical, racist, sexist, toxic, dangerous, or illegal content, and I will always do my best to explain why I cannot answer a question if it does not make sense or is not factually coherent. If I don't know the answer to a question, I will not provide false information. Is there anything else I can help you with?
如何系统的去学习大模型LLM ?
作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。
但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的zi yuan得到学习提升
😝有需要的小伙伴,可以V扫描下方二维码免费领取🆓
一、全套AGI大模型学习路线
AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!
二、640套AI大模型报告合集
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
三、AI大模型经典PDF籍
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些P DF籍就是非常不错的学习资源。
四、AI大模型商业化落地方案
阶段1:AI大模型时代的基础理解
- 目标:了解AI大模型的基本概念、发展历程和核心原理。
- 内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践
- L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
- 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
- 内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例
- L2.2 Prompt框架
- L2.2.1 什么是Prompt
- L2.2.2 Prompt框架应用现状
- L2.2.3 基于GPTAS的Prompt框架
- L2.2.4 Prompt框架与Thought
- L2.2.5 Prompt框架与提示词
- L2.3 流水线工程
- L2.3.1 流水线工程的概念
- L2.3.2 流水线工程的优点
- L2.3.3 流水线工程的应用
- L2.4 总结与展望
阶段3:AI大模型应用架构实践
- 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
- 内容:
- L3.1 Agent模型框架
- L3.1.1 Agent模型框架的设计理念
- L3.1.2 Agent模型框架的核心组件
- L3.1.3 Agent模型框架的实现细节
- L3.2 MetaGPT
- L3.2.1 MetaGPT的基本概念
- L3.2.2 MetaGPT的工作原理
- L3.2.3 MetaGPT的应用场景
- L3.3 ChatGLM
- L3.3.1 ChatGLM的特点
- L3.3.2 ChatGLM的开发环境
- L3.3.3 ChatGLM的使用示例
- L3.4 LLAMA
- L3.4.1 LLAMA的特点
- L3.4.2 LLAMA的开发环境
- L3.4.3 LLAMA的使用示例
- L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
- 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
- 内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
学习计划:
- 阶段1:1-2个月,建立AI大模型的基础知识体系。
- 阶段2:2-3个月,专注于API应用开发能力的提升。
- 阶段3:3-4个月,深入实践AI大模型的应用架构和私有化部署。
- 阶段4:4-5个月,专注于高级模型的应用和部署。
这份完整版的大模型 LLM 学习zhi nan已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
😝有需要的小伙伴,可以Vx扫描下方二维码免费领取🆓