ChatGPT的出现在全球掀起了AI大模型的浪潮,2023年可以被称为AI元年,AI大模型以一种野蛮的方式,闯入你我的生活之中。
从问答对话到辅助编程,从图画解析到自主创作,AI所展现出来的能力,超出了多数人的预料,让不少人惊呼:“未来是属于AI的”。AI大模型——成为互联网从业者必备技能。
01 大模型岗位需求
大模型时代,企业对人才的需求变了,AIGC相关岗位人才难求,薪资持续走高,AI运营薪资平均值约18457元,AI工程师薪资平均值约37336元,大模型算法薪资平均值约39607元。
掌握大模型技术你还能拥有更多可能性:
-
成为一名全栈大模型工程师,包括Prompt,LangChain,LoRA等技术开发、运营、产品等方向全栈工程;
-
能够拥有模型二次训练和微调能力,带领大家完成智能对话、文生图等热门应用;
-
薪资上浮10%-20%,覆盖更多高薪岗位,这是一个高需求、高待遇的热门方向和领域;
-
更优质的项目可以为未来创新创业提供基石。
02 主流大模型
大模型是指模型具有庞大的参数规模和复杂程度的机器学习模型。在深度学习领域,大模型通常是指具有数百万到数十亿参数的神经网络模型。
这些模型通常在各种领域,例如自然语言处理、图像识别和语音识别等方面,表现出高度准确和广泛的泛化能力。大模型按照功能可分为NLP大模型、CV大模型、科学计算大模型和多模态大模型。
如今,大模型支持的模态数量更加多样,从支持文本、图片等单一模态下的单一任务,逐渐发展成支持多种模态下的多种任务:
-
NLP(Natural Language Processing,自然语言处理)大模型:LLM为NLP大模型的一种,主要用于处理自然语言文本数据,具备强大的语言理解和生成能力,帮助人类完成问答、创作、文本等工作,例如Open AI的GPT系列模型。
-
CV(Computer Vision,计算机视觉)大模型:主要用于处理图像和视频数据,具备强大的图像识别和视频分析能力,如人脸识别、物体检测等,具体可以在智能驾驶、安防等领域进行利用,例如腾讯的PCAM大模型。
-
科学计算大模型:主要用于解决科学领域的计算问题,如生物信息学、材料科学、气候模拟等,需要处理大规模数值数据,例如华为的盘古气象模型。
-
多模态大模型:可以同时处理多种类型的模态数据,如文本、图像、语音等,实现跨模态搜索、跨模态生成等任务,已有的渗透应用具体包括搜索引擎、办公工具、金融电商等,例如谷歌的Vision Transformer模型。
03 2024大模型学习路线图
大模型学习路线图,整体分为7个大的阶段:
第一阶段:从大模型系统设计入手,讲解大模型的主要方法;
第二阶段:在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段:大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段:大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段:大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段:以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段:以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
04 量身定制学习方案
不同基础人群,有不同模型适配方案,匹配相关岗位,清晰明了。根据不同基础主要分了三类人群,分别是:
① 0基础人群
②Java、前端、大数据、C++、PHP等人员
③数据科学家、人工智能研究人员、AI开发人员等
如果想发表AI相关期刊或毕业论文(毕设)的人员,通过课程可以掌握大模型核心技术,完成期刊或毕业论文(毕设)的写作。
AI产品经理:
AI运营:
如果有Java、前端、大数据、PHP开发经验,为什么转行要来学大模型?
AI大模型大势所趋,热度极高,每个行业都在布局大模型,未来软件都要被AI大模型重构,Java、大数据学科学习大模型,通过这套课可以学习大模型内部机制,学习如何通过大模型做微调,学完你未来大模型Java开发就能领先一步,掌握大模型基础就可以转型大模型人才领域,从而获得高薪。
如果不想转行,学习这份资源也可以有技术进阶,因为未来应用开发也得学,大模型是未来软件工程师必备技能。
Java同学入行大模型需要本科以上,现在学习竞争力小,率先抢占大模型热点,进入AI的热门赛道,学完这份资源不但不会失业,想延续自己IT道路,想转行,未来还能找到更高薪资的岗位。课程里面有如何进行大模型的应用,即使你不理解原理,直接实操也能用得着。
已经学了人工智能了为什么转行要来学大模型?(如人工智能研究人员、AI开发人员、对AIGC感兴趣人员等)
ChatGPT诞生后,目前国内大模型逐渐崛起,大模型一定也必将是未来的一个发展趋势,未来软件都要被AI大模型所重写,所以对于已经有了人工智能基础的学生来说,可以用更短时间(8周)学习所有大模型,了解大模型背后原理,掌握大模型微调机制和原理,将国内外70%的大模型(开源的,非开源的)全都一网打尽。
AI的技术不断在迭代更新和发展,目前做AI的,80%的人仍然致力于AI传统的应用方式,比如之前的NLP的第三范式:预训练+微调,但是NLP目前已经发展到:预训练+Prompt+微调工程,虽然旧的方式依然能解决企业问题,但仍旧存在效率低、准确率低等问题。
目前在做AI业务的,都需要了解或者使用新的大模型应用技术,因为随着企业产品的更新迭代,技术也需要更新。
学习完带给你的能力:
-
基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
-
能够利用大模型解决相关实际项目需求:大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
-
基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能,学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
-
能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力:大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
大模型&AI产品经理如何学习
求大家的点赞和收藏,我花2万买的大模型学习资料免费共享给你们,来看看有哪些东西。
1.学习路线图
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
2.视频教程
网上虽然也有很多的学习资源,但基本上都残缺不全的,这是我自己整理的大模型视频教程,上面路线图的每一个知识点,我都有配套的视频讲解。
(都打包成一块的了,不能一一展开,总共300多集)
因篇幅有限,仅展示部分资料,需要点击下方图片前往获取
3.技术文档和电子书
这里主要整理了大模型相关PDF书籍、行业报告、文档,有几百本,都是目前行业最新的。
4.LLM面试题和面经合集
这里主要整理了行业目前最新的大模型面试题和各种大厂offer面经合集。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓