要实现一个基于AI Agent的协同供应链管理流程,我们可以参考以下步骤:
1. 首先,定义一个类`SupplyChainManager`,用于模拟供应链管理系统的功能。
```python class SupplyChainManager: def __init__(self): self.warehouse = WarehouseManager() self.ai_agent = AIAgent(self.warehouse)
def add_product(self, product_name, product_quantity): self.warehouse.add_product(product_name, product_quantity)
def check_inventory(self, product_name): return self.warehouse.check_inventory(product_name) def update_inventory(self, product_name, new_quantity): self.warehouse.update_inventory(product_name, new_quantity)
def get_all_products(self): return self.warehouse.get_all_products()
def suggest_products_to_sell(self, target_quantity): return self.ai_agent.suggest_products_to_sell(target_quantity)
def place_order(self, product_name, quantity): self.ai_agent.place_order(product_name, quantity) ```
2. 定义一个类`WarehouseManager`,用于模拟仓库管理系统的功能。
```python class WarehouseManager: def __init__(self): self.inventory = {} def add_product(self, product_name, product_quantity): self.inventory[product_name] = product_quantity
def check_inventory(self, product_name): return self.inventory.get(product_name, 0)
def update_inventory(self, product_name, new_quantity): old_quantity = self.inventory.get(product_name, 0) self.inventory[product_name] = new_quantity return old_quantity - new_quantity def get_all_products(self): return self.inventory.keys() ```
3. 定义一个类`AIAgent`,用于与`SupplyChainManager`进行交互。
```python class AIAgent: def __init__(self, supply_chain_manager): self.supply_chain_manager = supply_chain_manager
def suggest_products_to_sell(self, target_quantity): product_list = self.supply_chain_manager.get_all_products() product_stocks = [self.supply_chain_manager.check_inventory(product) for product in product_list] over_target_stock = [product for product, stock in zip(product_list, product_stocks) if stock > target_quantity]
return random.sample(over_target_stock, min(len(over_target_stock), target_quantity))
def update_inventory(self, product_name, new_quantity): self.supply_chain_manager.update_inventory(product_name, new_quantity) def place_order(self, product_name, quantity): old_quantity = self.supply_chain_manager.check_inventory(product_name) self.supply_chain_manager.add_product(product_name, quantity) self.update_inventory(product_name, old_quantity - quantity) ```
4. 编写一个简单的测试用例,演示如何使用`AI Agent`与`SupplyChainManager`交互。 ```python if __name__ == "__main__": supply_chain_manager = SupplyChainManager() ai_agent = AIAgent(supply_chain_manager) # 添加一些产品 supply_chain_manager.add_product("product1", 10) supply_chain_manager.add_product("product2", 20)
# AI agent 建议出售产品 print("建议出售产品:", ai_agent.suggest_products_to_sell(5))```
# 更新库存 supply_chain_manager.update_inventory("product1", 8)
# 查询库存 print("产品1的库存:", supply_chain_manager.check_inventory("product1")) # 下订单 ai_agent.place_order("product1", 3) print("下订单后,产品1的库存:", supply_chain_manager.check_inventory("product1"))
# 再次建议出售产品 print("再次建议出售产品:", ai_agent.suggest_products_to_sell(5)) ```
这个案例仅作为一个简单的演示,实际应用中,AI Agent可以根据需求进行更多的优化和扩展,例如使用机器学习算法进行库存预测,或者与其他供应链管理系统进行集成等。此外,还可以根据实际业务场景对`SupplyChainManager`和`WarehouseManager`进行更多的功能扩展。