Bootstrap

【数据结构】优先级队列(堆)


【本节目标】

  1. 掌握堆的概念及实现
  2. 掌握 PriorityQueue 的使用

1. 优先级队列

1.1 概念

前面介绍过队列,队列是一种先进先出(FIFO)的数据结构,但有些情况下,操作的数据可能带有优先级,一般出队列时,可能需要优先级高的元素先出队列,该中场景下,使用队列显然不合适,比如:在手机上玩游戏的时候,如果有来电,那么系统应该优先处理打进来的电话;初中那会班主任排座位时可能会让成绩好的同学先挑座位。
在这种情况下,数据结构应该提供两个最基本的操作,一个是返回最高优先级对象,一个是添加新的对象。这种数据结构就是优先级队列(Priority Queue)

2. 优先级队列的模拟实现

JDK1.8中的PriorityQueue底层使用了堆这种数据结构,而堆实际就是在完全二叉树的基础上进行了一些调整。

2.1 堆的概念

如果有一个关键码的集合K = {k0,k1, k2,…,kn-1},把它的所有元素按完全二叉树的顺序存储方式存储 在一个一维数组中,并满足:Ki <= K2i+1 且 Ki<= K2i+2 (Ki >= K2i+1 且 Ki >= K2i+2) i = 0,1,2…,则称为 小堆(或大堆)。将根节点最大的堆叫做最大堆或大根堆,根节点最小的堆叫做最小堆或小根堆。
堆的性质

  • 堆中某个节点的值总是不大于或不小于其父节点的值;
  • 堆总是一棵完全二叉树。
    在这里插入图片描述

2.2 堆的存储方式

从堆的概念可知,堆是一棵完全二叉树,因此可以层序的规则采用顺序的方式来高效存储
在这里插入图片描述
注意:对于非完全二叉树,则不适合使用顺序方式进行存储,因为为了能够还原二叉树,空间中必须要存储空节点,就会导致空间利用率比较低
在这里插入图片描述
将元素存储到数组中后,可以根据二叉树章节的性质5对树进行还原。假设i为节点在数组中的下标,则有:

  • 如果i为0,则i表示的节点为根节点,否则i节点的双亲节点为 (i - 1)/2
  • 如果2 * i + 1 小于节点个数,则节点i的左孩子下标为2 * i + 1,否则没有左孩子
  • 如果2 * i + 2 小于节点个数,则节点i的右孩子下标为2 * i + 2,否则没有右孩子

2.3 堆的创建

2.3.1 堆向下调整

对于集合{ 27,15,19,18,28,34,65,49,25,37 }中的数据,如果将其创建成堆呢?
在这里插入图片描述
仔细观察上图后发现:根节点的左右子树已经完全满足堆的性质,因此只需将根节点向下调整好即可
向下过程(以小堆为例)

  1. 让parent标记需要调整的节点,child标记parent的左孩子(注意:parent如果有孩子一定先是有左孩子)
  2. 如果parent的左孩子存在,即:child < size, 进行以下操作,直到parent的左孩子不存在
  • parent右孩子是否存在,存在找到左右孩子中最小的孩子,让child进行标
  • 将parent与较小的孩子child比较,如果:
    • parent小于较小的孩子child,调整结束
    • 否则:交换parent与较小的孩子child,交换完成之后,parent中大的元素向下移动,可能导致子树不满足对的性质,因此需要继续向下调整,即parent = child;child = parent*2+1; 然后继续2。
      在这里插入图片描述

大根堆:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
小根堆的代码:

public void shiftDown(int[] array, int parent) {
	// child先标记parent的左孩子,因为parent可能右左没有右
	int child = 2 * parent + 1;
	int size = array.length;
	while (child < size) {
		// 如果右孩子存在,找到左右孩子中较小的孩子,用child进行标记
		if(child+1 < size && array[child+1] < array[child]){
			child += 1;
		}
		// 如果双亲比其最小的孩子还小,说明该结构已经满足堆的特性了
		if (array[parent] <= array[child]) {
			break;
		}else{
			// 将双亲与较小的孩子交换
			int t = array[parent];
			array[parent] = array[child];
			array[child] = t;
			// parent中大的元素往下移动,可能会造成子树不满足堆的性质,因此需要继续向下调整
			parent = child;
			child = parent * 2 + 1;
		}
	}
}

注意:在调整以parent为根的二叉树时,必须要满足parent的左子树和右子树已经是堆了才可以向下调整。
时间复杂度分析

最坏的情况即图示的情况,从根一路比较到叶子,比较的次数为完全二叉树的高度,即时间复杂度为O(log2 n)

2.3.2 堆的创建

那对于普通的序列{ 1,5,3,8,7,6 },即根节点的左右子树不满足堆的特性,又该如何调整呢?
在这里插入图片描述
参考代码:

public static void createHeap(int[] array) {
	// 找倒数第一个非叶子节点,从该节点位置开始往前一直到根节点,遇到一个节点,应用向下调整
	int root = ((array.length-2)>>1);
	for (; root >= 0; root--) {
		shiftDown(array, root);
	}
}

2.3.3 建堆的时间复杂度

因为堆是完全二叉树,而满二叉树也是完全二叉树,此处为了简化使用满二叉树来证明(时间复杂度本来看的就是近似值,多几个节点不影响最终结果):
在这里插入图片描述
在这里插入图片描述
因此:当我们采用向下调整去建堆的时候,建堆的时间复杂度为O(N)。

2.4 堆的插入与删除

2.4.1 堆的插入

堆的插入总共需要两个步骤:

  1. 先将元素放入到底层空间中(注意:空间不够时需要扩容)
  2. 将最后新插入的节点向上调整,直到满足堆的性质
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
public void shiftUp(int child) {
	// 找到child的双亲
	int parent = (child - 1) / 2;
	while (child > 0) {
		// 如果双亲比孩子大,parent满足堆的性质,调整结束
		if (array[parent] > array[child]) {
			break;
		}
		else{
			// 将双亲与孩子节点进行交换
			int t = array[parent];
			array[parent] = array[child];
			array[child] = t;
			// 小的元素向下移动,可能到值子树不满足对的性质,因此需要继续向上调增
			child = parent;
			parent = (child - 1) / 1;
		}
	}
}

2.4.2 堆的删除

注意:堆的删除一定删除的是堆顶元素。具体如下:

  1. 将堆顶元素对堆中最后一个元素交换
  2. 将堆中有效数据个数减少一个
  3. 对堆顶元素进行向下调整
    在这里插入图片描述
    在这里插入图片描述

2.5 用堆模拟实现优先级队列

public class MyPriorityQueue {
	// 演示作用,不再考虑扩容部分的代码
	private int[] array = new int[100];
	private int size = 0;
	public void offer(int e) {
		array[size++] = e;
		shiftUp(size - 1);
	}
	public int poll() {
		int oldValue = array[0];
		array[0] = array[--size];
		shiftDown(0);
		return oldValue;
	}
	public int peek() {
		return array[0];
	}
}

常见习题:

  1. 下列关键字序列为堆的是:()
    A: 100,60,70,50,32,65 B: 60,70,65,50,32,100 C: 65,100,70,32,50,60
    D: 70,65,100,32,50,60 E: 32,50,100,70,65,60 F: 50,100,70,65,60,32
  2. 已知小根堆为8,15,10,21,34,16,12,删除关键字8之后需重建堆,在此过程中,关键字之间的比较次数是()
    A: 1 B: 2 C: 3 D: 4
  3. 最小堆[0,3,2,5,7,4,6,8],在删除堆顶元素0之后,其结果是()
    A: [3,2,5,7,4,6,8] B: [2,3,5,7,4,6,8]
    C: [2,3,4,5,7,8,6] D: [2,3,4,5,6,7,8]

[参考答案]
1.A 2.C 3.C

3.常用接口介绍

3.1 PriorityQueue的特性

Java集合框架中提供了PriorityQueuePriorityBlockingQueue两种类型的优先级队列,PriorityQueue是线程不安全的,PriorityBlockingQueue是线程安全的,本文主要介绍PriorityQueue。
在这里插入图片描述
关于PriorityQueue的使用要注意:

  1. 使用时必须导入PriorityQueue所在的包,即:
import java.util.PriorityQueue;
  1. PriorityQueue中放置的元素必须要能够比较大小,不能插入无法比较大小的对象,否则会抛出ClassCastException异常
  2. 不能插入null对象,否则会抛出NullPointerException
  3. 没有容量限制,可以插入任意多个元素,其内部可以自动扩容
  4. 插入和删除元素的时间复杂度为O(log2N)
  5. PriorityQueue底层使用了堆数据结构
  6. PriorityQueue默认情况下是小堆—即每次获取到的元素都是最小的元素

3.2 PriorityQueue常用接口介绍

  1. 优先级队列的构造
    此处只是列出了PriorityQueue中常见的几种构造方式,可以参考帮助文档
    在这里插入图片描述
static void TestPriorityQueue(){
	// 创建一个空的优先级队列,底层默认容量是11
	PriorityQueue<Integer> q1 = new PriorityQueue<>();
	// 创建一个空的优先级队列,底层的容量为initialCapacity
	PriorityQueue<Integer> q2 = new PriorityQueue<>(100);
	ArrayList<Integer> list = new ArrayList<>();
	list.add(4);
	list.add(3);
	list.add(2);
	list.add(1);
	// 用ArrayList对象来构造一个优先级队列的对象
	// q3中已经包含了三个元素
	PriorityQueue<Integer> q3 = new PriorityQueue<>(list);
	System.out.println(q3.size());
	System.out.println(q3.peek());
}

注意:默认情况下,PriorityQueue队列是小堆,如果需要大堆需要用户提供比较器

// 用户自己定义的比较器:直接实现Comparator接口,然后重写该接口中的compare方法即可
class IntCmp implements Comparator<Integer>{
	@Override
	public int compare(Integer o1, Integer o2) {
		return o2-o1;
	}
}
public class TestPriorityQueue {
	public static void main(String[] args) {
		PriorityQueue<Integer> p = new PriorityQueue<>(new IntCmp());
		p.offer(4);
		p.offer(3);
		p.offer(2);
		p.offer(1);
		p.offer(5);
		System.out.println(p.peek());
	}
}

此时创建出来的就是一个大堆。

  1. 插入/删除/获取优先级最高的元素
    在这里插入图片描述
static void TestPriorityQueue2(){
	int[] arr = {4,1,9,2,8,0,7,3,6,5};
	// 一般在创建优先级队列对象时,如果知道元素个数,建议就直接将底层容量给好
	// 否则在插入时需要不多的扩容
	// 扩容机制:开辟更大的空间,拷贝元素,这样效率会比较低
	PriorityQueue<Integer> q = new PriorityQueue<>(arr.length);
	for (int e: arr) {
		q.offer(e);
	}
	System.out.println(q.size()); // 打印优先级队列中有效元素个数
	System.out.println(q.peek()); // 获取优先级最高的元素
	// 从优先级队列中删除两个元素之和,再次获取优先级最高的元素
	q.poll();
	q.poll();
	System.out.println(q.size()); // 打印优先级队列中有效元素个数
	System.out.println(q.peek()); // 获取优先级最高的元素
	q.offer(0);
	System.out.println(q.peek()); // 获取优先级最高的元素
	// 将优先级队列中的有效元素删除掉,检测其是否为空
	q.clear();
	if(q.isEmpty()){
		System.out.println("优先级队列已经为空!!!");
	}
	else{
		System.out.println("优先级队列不为空");
	}
}

注意:以下是JDK 1.8中,PriorityQueue的扩容方式:

private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
private void grow(int minCapacity) {
	int oldCapacity = queue.length;
	// Double size if small; else grow by 50%
	int newCapacity = oldCapacity + ((oldCapacity < 64) ?
	(oldCapacity + 2) :
	(oldCapacity >> 1));
	// overflow-conscious code
	if (newCapacity - MAX_ARRAY_SIZE > 0)
	newCapacity = hugeCapacity(minCapacity);
	queue = Arrays.copyOf(queue, newCapacity);
}
private static int hugeCapacity(int minCapacity) {
	if (minCapacity < 0) // overflow
	throw new OutOfMemoryError();
	return (minCapacity > MAX_ARRAY_SIZE) ?
	Integer.MAX_VALUE :
	MAX_ARRAY_SIZE;
}

优先级队列的扩容说明:

  • 如果容量小于64时,是按照oldCapacity的2倍方式扩容的
  • 如果容量大于等于64,是按照oldCapacity的1.5倍方式扩容的
  • 如果容量超过MAX_ARRAY_SIZE,按照MAX_ARRAY_SIZE来进行扩容

3.3 oj练习

top-k问题:最大或者最小的前k个数据。比如:世界前500强公司
top-k问题:最小的K个数

class Solution {
	public int[] smallestK(int[] arr, int k) {
		// 参数检测
		if(null == arr || k <= 0)
		return new int[0];
		PriorityQueue<Integer> q = new PriorityQueue<>(arr.length);
		// 将数组中的元素依次放到堆中
		for(int i = 0; i < arr.length; ++i){
			q.offer(arr[i]);
		}
		// 将优先级队列的前k个元素放到数组中
		int[] ret = new int[k];
		for(int i = 0; i < k; ++i){
			ret[i] = q.poll();
		}
		return ret;
	}
}

该解法只是PriorityQueue的简单使用,并不是topK最好的做法,那topk该如何实现?下面介绍:

4. 堆的应用

4.1 PriorityQueue的实现

用堆作为底层结构封装优先级队列

4.2 堆排序

堆排序即利用堆的思想来进行排序,总共分为两个步骤:

  1. 建堆
    升序:建大堆
    降序:建小堆
  2. 利用堆删除思想来进行排序
    建堆和堆删除中都用到了向下调整,因此掌握了向下调整,就可以完成堆排序。
;