Bootstrap

Hive之系统内置函数&自定义函数(UDF、UDAF、UDTF)介绍和案例(附带完整代码)、IDEA运行Hive

1.1 系统内置函数

1.查看系统自带的函数

hive (default)> show functions;

2.显示自带的函数的用法

hive (default)> desc function upper;

3.详细显示自带的函数的用法

hive (default)> desc function extended upper;

1.2 自定义函数

1)Hive 自带了一些函数,比如:max/min 等,但是数量有限(大概二、三百个),自己可以通过自定义 UDF来方便的扩展。

2)当 Hive 提供的内置函数无法满足你的业务处理需要时,此时就可以考虑使用用户自定义函数(UDF:user-defined function)。

3)根据用户自定义函数类别分为以下三种:

(1)UDF(User-Defined-Function)

一进一出

(2)UDAF(User-Defined Aggregation Function)

聚集函数,多进一出

类似于:count/max/min

(3)UDTF(User-Defined Table-Generating Functions)

一进多出

如 lateral view explore()

4)官方文档地址

HivePlugins - Apache Hive - Apache Software Foundation

5)编程步骤:

(1)继承 org.apache.hadoop.hive.ql.UDF

(2)需要实现 evaluate 函数;evaluate 函数支持重载;

(3)在 hive 的命令行窗口创建函数

a)添加 jar :add jar linux_jar_path

b)创建 function,

create [temporary] function [dbname.]function_name AS class_name;

(4)在 hive 的命令行窗口删除函数

Drop [temporary] function [if exists] [dbname.]function_name;

6)注意事项

 UDF 必须要有返回类型,可以返回 null,但是返回类型不能为 void;

1.3 自定义 UDF 函数

案例一:大写字母变成小写字母

1.创建一个 Maven 工程 Hive

2.导入依赖

<dependencies>
<!-- https://mvnrepository.com/artifact/org.apache.hive/hive-exec -->
 <dependency>
  <groupId>org.apache.hive</groupId>
  <artifactId>hive-exec</artifactId>
  <version>2.1.0</version>
 </dependency>
</dependencies>

3.创建一个类

package com.allen.hive;
import org.apache.hadoop.hive.ql.exec.UDF;
public class Lower extends UDF {
public String evaluate (final String s) {
if (s == null) {
return null;
}
return s.toLowerCase();
}
}

4.打成 jar 包上传到服务器/opt/jar/udf.jar

使用rz命令或者winscp等其他工具上传到你想上传的目录即可

5.将 jar 包添加到 hive 的 classpath

hive (default)> add jar /opt/jar/udf.jar;

6.创建临时函数与开发好的 java class 关联

hive (default)> create temporary function mylower as "com.allen.hive.Lower";

7.即可在 hql 中使用自定义的函数 strip

hive (default)> select ename, mylower(ename) lowername from emp;

下面的案例就不再一一截图了,提供一下代码,有兴趣的可以自己实践。

案例二:修改数据类型使之成为想要的类型

package com.allen.hive;
import java.text.ParseException;
import java.text.SimpleDateFormat;
import java.util.Date;
import java.util.Locale;
import org.apache.hadoop.hive.ql.exec.UDF;

//1.定义一个类继承UDF,然后添加一个方法:evaluate,这个方法的参数和返回类型和函数的输入输出一致
//2.把项目打成jar包,然后放到hive的classPath下,或者在hive里面:add jar /opt/jar/myudf.jar
//3.在hive里面新建一个function然后指定到我们新建的类型:create function mydateparse as 'com.allen.hive.MyDateParser';
//4.使用方法:select mydateparser(time) from apache-log limit 10;

public class MyDataParser extends UDF{
     //hive自定义函数,继承UDF类之后,还需要定义一个
     //evaluate方法,这个方法的参数和hive函数接受的参数个数和数据类型一致
     //方法的返回值和hive函数的返回值类型一致
     //这里接受的参数,[29/April/2016:17:38:20 +0800]
     //返回的结果:2016-4-28 20:40:39
     public String evaluate(String s){
          SimpleDateFormat format=new SimpleDateFormat("dd/MMMMM/yyyy:HH:mm:ss Z",Locale.ENGLISH);
          if(s.indexOf("[")>-1){
              s=s.replace("[", "");
          }if(s.indexOf("]")>-1){
              s=s.replace("]", "");
          }
          try {
              //将输入的string转换成date数据类型
              Date date=format.parse(s);
              SimpleDateFormat rformat=new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
              return rformat.format(date);
          } catch (ParseException e) {
              // TODO Auto-generated catch block
              e.printStackTrace();
              return "";
          }
     }
}

步骤同案例一

案例三:把一个字段拆分成多个字段

package com.allen.hive;

import java.util.ArrayList;
import org.apache.hadoop.hive.ql.exec.UDFArgumentException;
import org.apache.hadoop.hive.ql.metadata.HiveException;
import org.apache.hadoop.hive.ql.udf.generic.GenericUDTF;
import org.apache.hadoop.hive.serde2.objectinspector.ObjectInspector;
import org.apache.hadoop.hive.serde2.objectinspector.ObjectInspectorFactory;
import org.apache.hadoop.hive.serde2.objectinspector.StructObjectInspector;
import org.apache.hadoop.hive.serde2.objectinspector.primitive.PrimitiveObjectInspectorFactory;

public class MyRequestParser extends GenericUDTF{
        @Override
          public StructObjectInspector initialize(ObjectInspector[] argIOs) throws UDFArgumentException {
              if(argIOs.length!=1){
              throw new UDFArgumentException("参数不正确");
          }
          ArrayList<String> filedNames=new ArrayList<String>();
          ArrayList<ObjectInspector> fieldOIs=new ArrayList<ObjectInspector>();
          filedNames.add("rool1");
          fieldOIs.add(PrimitiveObjectInspectorFactory.javaStringObjectInspector);
          filedNames.add("rool2");
          fieldOIs.add(PrimitiveObjectInspectorFactory.javaStringObjectInspector);
          filedNames.add("rool3");
          fieldOIs.add(PrimitiveObjectInspectorFactory.javaStringObjectInspector);
          //将返回字段设置到该UDTF的返回值类型中
          return ObjectInspectorFactory.getStandardStructObjectInspector(filedNames, fieldOIs);
     }
     @Override
     public void close() throws HiveException {

     }
     //process方法是我们处理函数的输入并且输出结果的过程定义方法
     @Override
     public void process(Object[] args) throws HiveException {
        String input =args[0].toString();
        //去掉两头的“"”,\是转义字符。即两头的“"”,用空来代替“”
          input=input.replace("\"", "");
          String[] result=input.split(" ");
          //如果解析错误或失败,则返回三个字段的内容是“--”
          if(result.length!=3){
              result[0]="--";
              result[1]="--";
              result[2]="--";
          }
              forward(result);
     }
}

步骤同案例一

案例四:求和函数

package com.allen.hive;

import org.apache.hadoop.hive.ql.exec.UDAF;
import org.apache.hadoop.hive.ql.exec.UDAFEvaluator;
import org.apache.hadoop.io.IntWritable;

public class MaxFlowUDAF extends UDAF {
     public static class MaxNumberUDAFEvaluator implements UDAFEvaluator{
          private IntWritable result;
          public void init(){
              result=null;
          }
          //聚合的多行中每行的被聚合的值都会被调用一次iterate方法,所以在这个方法里面我们来定义聚合规则
          public boolean iterate(IntWritable value){
              if(value==null){
                   return false;
              }if(result==null){
                   result=new IntWritable(value.get());
              }else{
                   //需求是求出流量最大值,在这里进行流量值的比较,将最大值放入result
                   result.set(Math.max(result.get(), value.get()));
              }
              return true;
          }
          //hive需要部分聚合结果时会调用该方法,返回当前的result作为hive取部分聚合值得结果
          public IntWritable terminatePartial(){
              return result;
          }
          //聚合值,新行未被处理的值会调用merge加入聚合,在这里直接调用上面定义的聚合规则方法iterate
          public boolean merge(IntWritable other){
              return iterate(other);
          }
          //hive需要最终聚合结果时调用的方法,返回最终结果
          public IntWritable terminate(){
              return result;
          }
     }
}

步骤同案例一

案例五:排序TopN

package com.allen.hive;

import java.util.ArrayList;
import java.util.Collections;
import java.util.Comparator;
import java.util.List;
import org.apache.hadoop.hive.ql.exec.UDAF;
import org.apache.hadoop.hive.ql.exec.UDAFEvaluator;

public class TopnUDAF extends UDAF{
     public static class State{
          ArrayList<Double> a;//保存topn的结果
          int n;//调用该函数的topn的n
     }

     public static class Evaluator implements UDAFEvaluator{
          private State state;
          public Evaluator() {
              init();
          }
          //初始化Evaluator对象
          public void init() {
              if(state==null){
                   state = new State();
              }
              state.a = new ArrayList<Double>();
              state.n = 0;
          }
          /**
           *map任务每行的值都会被调用一次iterate方法,iterate接收的参数正是调用函数时传入的参数
           * @param o 聚合的字段值
           * @param n   topn的n
           * @return
           */
          public boolean iterate(Double o,int n){
              //升降序topn表示,false表示最大值topn,true表示最小值topn
              boolean ascending = false;
              state.n = n;
              if(o!=null){
                   //是否插入标志
                   boolean doInsert = state.a.size()<n;
                   //如果当前的state.a的元素数量大于或者等于n则需要插入操作
                   if(!doInsert){
                        Double last = state.a.get(state.a.size()-1);
                        if(ascending){
                             doInsert = o<last;
                        }else{
                             doInsert = o>last;
                        }
                   }
                   if(doInsert){
                        //有顺序的插入o的值
                        binaryInsert(state.a,o,ascending);
                        if(state.a.size()>n){
                             state.a.remove(state.a.size()-1);
                        }
                   }
              }
              return true;
          }
          //将value的值按照ascending的顺序插入到List中相应的位置处
          static <T extends Comparable<T>> void binaryInsert(List<T> list,T value,boolean ascending){
              //根据顺序获取value在list中的位置
              int position = Collections.binarySearch(list, value,getComparator(ascending,(T)null));//!!!!
              if(position<0){
                   position = (-position) - 1;
              }
              list.add(position, value);
          }
          //比较器方法
          static <T extends Comparable<T>> Comparator<T> getComparator(boolean ascending,T dummy){
              Comparator<T> comp;
              if(ascending){
                   comp = new Comparator<T>(){
                        public int compare(T o1,T o2){
                             return o1.compareTo(o2);
                        }
                   };
              }else{
                   comp = new Comparator<T>(){
                        public int compare(T o1,T o2){
                             return o2.compareTo(o1);
                        }
                   };
              }
              return comp;
          }
          //一个map端执行结束后的输出值,这个值会被送到merge去合并
          public State terminatePartial(){
              if(state.a.size()>0){
                   return state;
              }else{
                   return null;
              }
          }
          /**
           * reduce端,将map端的输出结果,即terminatePartial的返回值,进行合并操作
           * 有多少个map端,reduce将会调用多少次merge方法
           * @param o 本次merge合并需要处理的map端terminatePartial方法返回的state对象
           * @return
           */
          public boolean merge(State o){
              //升降序topn表示,false表示最大值topn,true表示最小值topn
              boolean ascending = false;
              if(o!=null){
                   state.n = o.n;
                   state.a = sortedMerge(o.a,state.a,ascending,o.n);
              }
              return true;
          }
          static <T extends Comparable<T>> ArrayList<T> sortedMerge(List<T> a1,List<T> a2,boolean ascending,int n){
              Comparator<T> comparator = getComparator(ascending,(T)null);
              int n1 = a1.size();
              int n2 = a2.size();
              int p1 = 0;//当前a1的元素
              int p2 = 0;//当前a2的元素
              //保存结果list,有n个元素
              ArrayList<T> output = new ArrayList<T>(n);
              //遍历并将a1和a2合并到output中,合并过程中保证output最多有n个元素
              while(output.size()<n && (p1<n1 || p2<n2)){
                   if(p1<n1){
                        if(p2==n2||comparator.compare(a1.get(p1), a2.get(p2))<0){
                             output.add(a1.get(p1++));
                        }
                   }
                   if(output.size()==n){
                        break;
                   }
                   if(p2<n2){
                        if(p1==n1||comparator.compare(a2.get(p2), a1.get(p1))<0){
                             output.add(a2.get(p2++));
                        }
                   }
              }
              return output;
          }
          public ArrayList<Double> terminate(){
              if(state.a.size()>0){
                           return state.a;
              }else{
                   return null;
              }
          }
     }   
}

步骤同案例一

附加:pom.xml配置

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>
    <groupId>com.allen.hive</groupId>
    <artifactId>Hive_Test</artifactId>
    <version>1.0-SNAPSHOT</version>
    <dependencies>
        <dependency>
            <groupId>junit</groupId>
            <artifactId>junit</artifactId>
            <version>3.8.1</version>
            <scope>test</scope>
        </dependency>
        <!-- https://mvnrepository.com/artifact/org.apache.hive/hive-exec -->
        <dependency>
            <groupId>org.apache.hive</groupId>
            <artifactId>hive-exec</artifactId>
            <version>2.1.0</version>
        </dependency>
        <!-- https://mvnrepository.com/artifact/org.apache.hive/hive-contrib -->
        <dependency>
            <groupId>org.apache.hive</groupId>
            <artifactId>hive-contrib</artifactId>
            <version>2.1.0</version>
        </dependency>
        <!-- https://mvnrepository.com/artifact/org.apache.hive/hive-jdbc -->
        <dependency>
            <groupId>org.apache.hive</groupId>
            <artifactId>hive-jdbc</artifactId>
            <version>2.1.0</version>
        </dependency>
    </dependencies>
</project>

1.4 IDEA连接Hive,执行select简单测试

package com.allen.hive;

import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.ResultSet;
import java.sql.Statement;

public class HiveTest {
     public static void main(String[] args) throws Exception {
          Class.forName("org.apache.hive.jdbc.HiveDriver");
          Connection conn=DriverManager.getConnection("jdbc:hive2://node4:10000","root","123qwe");
          try{
              Statement st=conn.createStatement();
              ResultSet ret=st.executeQuery("select count(*) from log_table");
              if(ret.next()){
                   System.out.println(ret.getInt(1));
              }
          }catch(Exception e){
              e.printStackTrace();
          }finally{
              conn.close();

          }
     }
}

因为使用的是hive2,所以要在CLI先使用命令hiveserver2启动10000端口,再执行程序,不然会报错:拒绝连接

结果如下:

与CLI执行结果一致:

执行程序时遇到的问题:

ERROR StatusLogger No log4j2 configuration file found. Using default configuration: logging only errors to the console.

原因:log4j2的配置文件没有导入

解决办法:

尝试导入log4j.properties ,但并不行

需要导入log4j2.xml

在你项目的src下的resources下新建log4j2.xml,eclipse和IDEA会把其配置到WEB-INF的classes下

log4j2的配置

<?xml version="1.0" encoding="UTF-8"?>
<Configuration>
    <Appenders>
        <Console name="STDOUT" target="SYSTEM_OUT">
            <PatternLayout pattern="%d %-5p [%t] %C{2} (%F:%L) - %m%n"/>
        </Console>
        <RollingFile name="RollingFile" fileName="logs/strutslog1.log"
                     filePattern="logs/$${date:yyyy-MM}/app-%d{MM-dd-yyyy}-%i.log.gz">
            <PatternLayout>
                <Pattern>%d{MM-dd-yyyy} %p %c{1.} [%t] -%M-%L- %m%n</Pattern>
            </PatternLayout>
            <Policies>
                <TimeBasedTriggeringPolicy />
                <SizeBasedTriggeringPolicy size="1 KB"/>
            </Policies>
            <DefaultRolloverStrategy fileIndex="max" max="2"/>
        </RollingFile>
    </Appenders>
    <Loggers>
        <Logger name="com.opensymphony.xwork2" level="WAN"/>
        <Logger name="org.apache.struts2" level="WAN"/>
        <Root level="warn">
            <AppenderRef ref="STDOUT"/>
        </Root>
    </Loggers>
</Configuration>

;