Bootstrap

导数公式及求导法则

补充说明:
抽象函数使用洛必达法则最多可用到
在这里插入图片描述

基本初等函数的导数公式

( 1 )   ( C ) ′ = 0 ( 3 )   ( sin ⁡ x ) ′ = cos ⁡ x ( 5 )   ( tan ⁡ x ) ′ = sec ⁡ 2 x   ( sec ⁡ x = 1 cos ⁡ x ) ( 7 )   ( sec ⁡ x ) ′ = sec ⁡ x tan ⁡ x ( 9 )   ( a x ) ′ = a x ln ⁡ a ( 11 )   ( log ⁡ a x ) ′ = 1 x ln ⁡ a ( 13 )   ( arcsin ⁡ x ) ′ = 1 1 − x 2 ( 15 )   ( arctan ⁡ x ) ′ = 1 1 + x 2 ( 17 )   [ ln ⁡ ( x + x 2 + 1 ) ] ′ = 1 x 2 + 1 注:(17)(18)是推导 ( 2 )   ( x μ ) ′ = μ x μ − 1 ( 4 )   ( cos ⁡ x ) ′ = − sin ⁡ x ( 6 )   ( cot ⁡ x ) ′ = − csc ⁡ 2 x   ( csc ⁡ x = 1 sin ⁡ x ) ( 8 )   ( csc ⁡ x ) ′ = − csc ⁡ x cot ⁡ x ( 10 )   ( e x ) ′ = e x ( 12 )   ( ln ⁡ x ) ′ = 1 x ,   ( ln ⁡ ∣ x ∣ ) ′ = 1 x ( 14 )   ( arccos ⁡ x ) ′ = − 1 1 − x 2 ( 16 )   ( arccot   x ) ′ = − 1 1 + x 2 ( 18 )   [ ln ⁡ ( x + x 2 − 1 ) ] ′ = 1 x 2 − 1 \begin{align*} \begin{aligned} &(1) \ (C)'=0 \\ &(3) \ (\sin x)'=\cos x \\ &(5) \ (\tan x)'=\sec^2x \ (\sec x=\frac{1}{\cos x}) \\ &(7) \ (\sec x)'=\sec x \tan x \\ &(9) \ (a^x)'=a^x \ln a \\ &(11) \ (\log_a x)'=\frac{1}{x \ln a} \\ &(13) \ (\arcsin x)'=\frac{1} {\sqrt{1−x^2}} \\ &(15) \ (\arctan x)'=\frac{1}{\sqrt{1+x^2}} \\ &(17) \ [\ln (x+\sqrt{x^2+1})]'=\frac{1}{\sqrt{x^2+1}} \\ &\text{注:(17)(18)是推导} \\ \end{aligned} \quad \begin{aligned} &(2) \ (x^{\mu})'=\mu x^{\mu−1} \\ &(4) \ (\cos x)'=−\sin x \\ &(6) \ (\cot x)'=−\csc^2x \ (\csc x=\frac{1}{\sin x}) \\ &(8) \ (\csc x)'=−\csc x \cot x \\ &(10) \ (e^x)'=e^x \\ &(12) \ (\ln x)'=\frac{1}{x} ,\ (\ln |x|)'=\frac{1}{x}\\ &(14) \ (\arccos x)'=−\frac{1}{\sqrt{1−x^2}} \\ &(16) \ (\text{arccot} \, x)'=−\frac{1}{1+x^2} \\ &(18) \ [\ln (x+\sqrt{x^2-1})]'=\frac{1}{\sqrt{x^2-1}} \end{aligned} \end{align*} (1) (C)0(3) (sinx)=cosx(5) (tanx)=sec2x (secx=cosx1)(7) (secx)=secxtanx(9) (ax)=axlna(11) (logax)=xlna1(13) (arcsinx)=1x2 1(15) (arctanx)=1+x2 1(17) [ln(x+x2+1 )]=x2+1 1注:(17)(18)是推导(2) (xμ)=μxμ1(4) (cosx)=sinx(6) (cotx)=csc2x (cscx=sinx1)(8) (cscx)=cscxcotx(10) (ex)=ex(12) (lnx)=x1, (lnx)=x1(14) (arccosx)=1x2 1(16) (arccotx)=1+x21(18) [ln(x+x21 )]=x21 1

函数的和、差、积、商的求导法则

u = u ( x ) , v = v ( x ) u=u(x),v=v(x) u=u(x),v=v(x)都可导,则
(1) ( u + v ) ′ = u ′ ± v ′ (u+v)'=u'±v' (u+v)=u±v
(2) ( C u ) ′ = C u ′   ( C 是常数 ) (Cu)'=Cu' \ (C 是常数) (Cu)=Cu (C是常数)
(3) ( u v ) ′ = u ′ v + u v ′ (uv)'=u'v+uv' (uv)=uv+uv
(4) ( u v ) ′ = u ′ v − u v ′ v 2   ( v ≠ 0 ) (uv)'=\displaystyle\frac{u'v−uv'}{v^2} \ (v≠0) (uv)=v2uvuv (v=0)

复合函数的求导法则

u = φ ( x ) u=\varphi(x) u=φ(x) x x x处可导, y = f ( u ) y=f(u) y=f(u)在对应点处可导,则复合函数 y = f [ φ ( x ) ] y=f[\varphi(x)] y=f[φ(x)] x x x处的导数为
d y d x = d y d u ⋅ d u d x = f ′ ( u ) ⋅ φ ′ ( x ) \frac{dy}{dx}=\frac{dy}{du}\cdot\frac{du}{dx}=f'(u) \cdot\varphi'(x) dxdy=dudydxdu=f(u)φ(x)

隐函数的求导法则

y = y ( x ) y=y(x) y=y(x)是由方程 F ( x , y ) = 0 F(x,y)=0 F(x,y)=0所确定的可导函数,为求得 y ′ y' y,可在方程 F ( x , y ) = 0 F(x,y)=0 F(x,y)=0两边对 x x x求导,得到一个含有 y ′ y' y的方程,从中解出 y ′ y' y即可。
另有隐函数求导公式:
d y d x = − F x ′ F y ′ \frac{dy}{dx}=-\frac{F'_x}{F'_y} dxdy=FyFx

反函数的求导法则

y = f ( x ) y=f(x) y=f(x)在某区间内单调可导,且 f ′ ( x ) ≠ 0 f'(x)≠0 f(x)=0,则其反函数 x = φ ( y ) x=\varphi(y) x=φ(y)在对应区间内也可导,且
φ ′ ( y ) = 1 f ′ ( x )  或  d x d y = 1 d y d x \varphi'(y)=\frac{1}{f'(x)} \ 或\ \frac{dx}{dy}=\frac{1}{\displaystyle\frac{dy}{dx}} φ(y)=f(x)1  dydx=dxdy1

参数方程的求导法则

参数方程的求导法则

;