# -*- coding: utf-8 -*-import numpy as np
import matplotlib.pyplot as plt
from matplotlib.colors import ListedColormap
from sklearn.cross_validation import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.datasets import make_moons, make_circles, make_classification
from sklearn.neighbors import KNeighborsClassifier
from sklearn.svm import SVC
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier
from sklearn.naive_bayes import GaussianNB
# from sklearn.lda import LDA# from sklearn.qda import QDAfrom sklearn.discriminant_analysis import LinearDiscriminantAnalysis as LDA
from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis as QDA
h =.02# step size in the mesh
names =["Nearest Neighbors","Linear SVM","RBF SVM","Decision Tree","Random Forest","AdaBoost","Naive Bayes","LDA","QDA"]
classifiers =[
KNeighborsClassifier(3),
SVC(kernel="linear", C=0.025),
SVC(gamma=2, C=1),
DecisionTreeClassifier(max_depth=5),
RandomForestClassifier(max_depth=5, n_estimators=10, max_features=1),
AdaBoostClassifier(),
GaussianNB(),
LDA(),
QDA()]
X, y = make_classification(n_features=2, n_redundant=0, n_informative=2,
random_state=1, n_clusters_per_class=1)
rng = np.random.RandomState(2)
X +=2* rng.uniform(size=X.shape)
linearly_separable =(X, y)
datasets =[make_moons(noise=0.3, random_state=0),
make_circles(noise=0.2, factor=0.5, random_state=1),
linearly_separable
]
figure = plt.figure(figsize=(27,9))
i =1# iterate over datasetsfor ds in datasets:# preprocess dataset, split into training and test part
X, y = ds
X = StandardScaler().fit_transform(X)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.4)
x_min, x_max = X[:,0].min()-.5, X[:,0].max()+.5
y_min, y_max = X[:,1].min()-.5, X[:,1].max()+.5
xx, yy = np.meshgrid(np.arange(x_min, x_max, h),
np.arange(y_min, y_max, h))# just plot the dataset first
cm = plt.cm.RdBu
cm_bright = ListedColormap(['#FF0000','#0000FF'])
ax = plt.subplot(len(datasets),len(classifiers)+1, i)# Plot the training points
ax.scatter(X_train[:,0], X_train[:,1], c=y_train, cmap=cm_bright)# and testing points
ax.scatter(X_test[:,0], X_test[:,1], c=y_test, cmap=cm_bright, alpha=0.6)
ax.set_xlim(xx.min(), xx.max())
ax.set_ylim(yy.min(), yy.max())
ax.set_xticks(())
ax.set_yticks(())
i +=1# iterate over classifiersfor name, clf inzip(names, classifiers):
ax = plt.subplot(len(datasets),len(classifiers)+1, i)
clf.fit(X_train, y_train)
score = clf.score(X_test, y_test)# Plot the decision boundary. For that, we will assign a color to each# point in the mesh [x_min, m_max]x[y_min, y_max].ifhasattr(clf,"decision_function"):
Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()])else:
Z = clf.predict_proba(np.c_[xx.ravel(), yy.ravel()])[:,1]# Put the result into a color plot
Z = Z.reshape(xx.shape)
ax.contourf(xx, yy, Z, cmap=cm, alpha=.8)# Plot also the training points
ax.scatter(X_train[:,0], X_train[:,1], c=y_train, cmap=cm_bright)# and testing points
ax.scatter(X_test[:,0], X_test[:,1], c=y_test, cmap=cm_bright,
alpha=0.6)
ax.set_xlim(xx.min(), xx.max())
ax.set_ylim(yy.min(), yy.max())
ax.set_xticks(())
ax.set_yticks(())
ax.set_title(name)
ax.text(xx.max()-.3, yy.min()+.3,('%.2f'% score).lstrip('0'),
size=15, horizontalalignment='right')
i +=1
figure.subplots_adjust(left=.02, right=.98)
plt.show()