Bootstrap

YOLOV5学习笔记(四)——项目目录及代码讲解

目录

目录

1 目录结构

1.1 查看目录结构

1.2 yolov5目录结构

2 代码解析

2.1 utils/activations.py 激活函数

2.2  models/common.py 网络组件

2.3  models/yolo.py 整个网络构建

2.4  输入设定代码

2.4.1 统一输入图片大小

2.4.2 数据增强 data augmentation

2.4.3 utils/datasets.py

2.5 utils/metrics.py性能指标

2.6 utils/loss.py 损失函数

2.7 utils/autoanchor.py 自动锚框


1 目录结构

1.1 查看目录结构

sudo apt-get install tree
tree <目录名>  显示该目录下的子目录、文件的层次结构。

1.2 yolov5目录结构

 

 

2 代码解析

2.1 utils/activations.py 激活函数

Swish函数

Mish函数

Hardswish函数

mish函数比较复杂,为了简单表达,使用分段函数

FReLU函数

 它的激活区域不光是方形,还可以是斜边和带弧形的。

 

import torch
import torch.nn as nn
import torch.nn.functional as F


# SiLU https://arxiv.org/pdf/1606.08415.pdf ----------------------------------------------------------------------------
#定义了各种激活函数
class SiLU(nn.Module):  # export-friendly version of nn.SiLU()
    @staticmethod
    def forward(x):
        return x * torch.sigmoid(x) #Swish函数


class Hardswish(nn.Module):  # export-friendly version of nn.Hardswish()
    @staticmethod
    def forward(x):
        # return x * F.hardsigmoid(x)  # for TorchScript and CoreML
        return x * F.hardtanh(x + 3, 0.0, 6.0) / 6.0  # for TorchScript, CoreML and ONNX


# Mish https://github.com/digantamisra98/Mish --------------------------------------------------------------------------
class Mish(nn.Module):
    @staticmethod
    def forward(x):
        return x * F.softplus(x).tanh() #Mish函数


class MemoryEfficientMish(nn.Module):
    class F(torch.autograd.Function):
        @staticmethod
        def forward(ctx, x):
            ctx.save_for_backward(x)
            return x.mul(torch.tanh(F.softplus(x)))  # x * tanh(ln(1 + exp(x)))

        @staticmethod
        def backward(ctx, grad_output):
            x = ctx.saved_tensors[0]
            sx = torch.sigmoid(x)
            fx = F.softplus(x).tanh()
            return grad_output * (fx + x * sx * (1 - fx * fx))

    def forward(self, x):
        return self.F.apply(x)


# FReLU https://arxiv.org/abs/2007.11824 -------------------------------------------------------------------------------
class FReLU(nn.Module):
    def __init__(self, c1, k=3):  # ch_in, kernel
        super().__init__()
        #nn.Con2d(in_channels, out_channels, kernel_size, stride, padding, dilation=1, groups=1, bias=True)
        self.conv = nn.Conv2d(c1, c1, k, 1, 1, groups=c1, bias=False)
        self.bn = nn.BatchNorm2d(c1)

    def forward(self, x):
        return torch.max(x, self.bn(self.conv(x)))


# ACON https://arxiv.org/pdf/2009.04759.pdf ----------------------------------------------------------------------------
class AconC(nn.Module):
    r""" ACON activation (activate or not).
    AconC: (p1*x-p2*x) * sigmoid(beta*(p1*x-p2*x)) + p2*x, beta is a learnable parameter
    according to "Activate or Not: Learning Customized Activation" <https://arxiv.org/pdf/2009.04759.pdf>.
    """

    def __init__(self, c1):
        super().__init__()
        self.p1 = nn.Parameter(torch.randn(1, c1, 1, 1))
        self.p2 = nn.Parameter(torch.randn(1, c1, 1, 1))
        self.beta = nn.Parameter(torch.ones(1, c1, 1, 1))

    def forward(self, x):
        dpx = (self.p1 - self.p2) * x
        return dpx * torch.sigmoid(self.beta * dpx) + self.p2 * x


class MetaAconC(nn.Module):
    r""" ACON activation (activate or not).
    MetaAconC: (p1*x-p2*x) * sigmoid(beta*(p1*x-p2*x)) + p2*x, beta is generated by a small network
    according to "Activate or Not: Learning Customized Activation" <https://arxiv.org/pdf/2009.04759.pdf>.
    """

    def __init__(self, c1, k=1, s=1, r=16):  # ch_in, kernel, stride, r
        super().__init__()
        c2 = max(r, c1 // r)
        self.p1 = nn.Parameter(torch.randn(1, c1, 1, 1))
        self.p2 = nn.Parameter(torch.randn(1, c1, 1, 1))
        self.fc1 = nn.Conv2d(c1, c2, k, s, bias=True)
        self.fc2 = nn.Conv2d(c2, c1, k, s, bias=True)
        # self.bn1 = nn.BatchNorm2d(c2)
        # self.bn2 = nn.BatchNorm2d(c1)

    def forward(self, x):
        y = x.mean(dim=2, keepdims=True).mean(dim=3, keepdims=True)
        # batch-size 1 bug/instabilities https://github.com/ultralytics/yolov5/issues/2891
        # beta = torch.sigmoid(self.bn2(self.fc2(self.bn1(self.fc1(y)))))  # bug/unstable
        beta = torch.sigmoid(self.fc2(self.fc1(y)))  # bug patch BN layers removed
        dpx = (self.p1 - self.p2) * x
        return dpx * torch.sigmoid(beta * dpx) + self.p2 * x

2.2  models/common.py 网络组件

#特征图自动填充函数
def autopad(k, p=None):  # kernel, padding
    # Pad to 'same'
    if p is None:
        p = k // 2 if isinstance(k, int) else [x // 2 for x in k]  # auto-pad
    return p

# 卷积conv+BN归一化+hardswish激活
class Conv(nn.Module):
    # Standard convolution
    def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True):  # ch_in, ch_out, kernel, stride, padding, groups
        super().__init__()
        self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g, bias=False)
        self.bn = nn.BatchNorm2d(c2)
        self.act = nn.SiLU() if act is True else (act if isinstance(act, nn.Module) else nn.Identity())

    def forward(self, x): #正向
        return self.act(self.bn(self.conv(x)))

    def forward_fuse(self, x):
        return self.act(self.conv(x))

#深度可分离卷积(yolov5没有使用)
class DWConv(Conv):
    # Depth-wise convolution class
    def __init__(self, c1, c2, k=1, s=1, act=True):  # ch_in, ch_out, kernel, stride, padding, groups
        super().__init__(c1, c2, k, s, g=math.gcd(c1, c2), act=act)


class TransformerLayer(nn.Module):
    # Transformer layer https://arxiv.org/abs/2010.11929 (LayerNorm layers removed for better performance)
    def __init__(self, c, num_heads):
        super().__init__()
        self.q = nn.Linear(c, c, bias=False)
        self.k = nn.Linear(c, c, bias=False)
        self.v = nn.Linear(c, c, bias=False)
        self.ma = nn.MultiheadAttention(embed_dim=c, num_heads=num_heads)
        self.fc1 = nn.Linear(c, c, bias=False)
        self.fc2 = nn.Linear(c, c, bias=False)

    def forward(self, x):
        x = self.ma(self.q(x), self.k(x), self.v(x))[0] + x
        x = self.fc2(self.fc1(x)) + x
        return x


class TransformerBlock(nn.Module):
    # Vision Transformer https://arxiv.org/abs/2010.11929
    def __init__(self, c1, c2, num_heads, num_layers):
        super().__init__()
        self.conv = None
        if c1 != c2:
            self.conv = Conv(c1, c2)
        self.linear = nn.Linear(c2, c2)  # learnable position embedding
        self.tr = nn.Sequential(*(TransformerLayer(c2, num_heads) for _ in range(num_layers)))
        self.c2 = c2

    def forward(self, x):
        if self.conv is not None:
            x = self.conv(x)
        b, _, w, h = x.shape
        p = x.flatten(2).permute(2, 0, 1)
        return self.tr(p + self.linear(p)).permute(1, 2, 0).reshape(b, self.c2, w, h)


class Bottleneck(nn.Module):
    # Standard bottleneck
    def __init__(self, c1, c2, shortcut=True, g=1, e=0.5):  # ch_in, ch_out, shortcut, groups, expansion
        super().__init__()
        c_ = int(c2 * e)  # hidden channels
        self.cv1 = Conv(c1, c_, 1, 1)
        self.cv2 = Conv(c_, c2, 3, 1, g=g)
        self.add = shortcut and c1 == c2

    def forward(self, x):
        return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))


class BottleneckCSP(nn.Module):
    # CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
    def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):  # ch_in, ch_out, number, shortcut, groups, expansion
        super().__init__()
        c_ = int(c2 * e)  # hidden channels
        self.cv1 = Conv(c1, c_, 1, 1)
        self.cv2 = nn.Conv2d(c1, c_, 1, 1, bias=False)
        self.cv3 = nn.Conv2d(c_, c_, 1, 1, bias=False)
        self.cv4 = Conv(2 * c_, c2, 1, 1)
        self.bn = nn.BatchNorm2d(2 * c_)  # applied to cat(cv2, cv3)
        self.act = nn.SiLU()
        self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))

    def forward(self, x):#根据self.add的值来确定是否有shortcut
        y1 = self.cv3(self.m(self.cv1(x)))
        y2 = self.cv2(x)
        return self.cv4(self.act(self.bn(torch.cat((y1, y2), dim=1))))


class C3(nn.Module):
    # CSP Bottleneck with 3 convolutions
    def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):  # ch_in, ch_out, number, shortcut, groups, expansion
        super().__init__()
        c_ = int(c2 * e)  # hidden channels
        self.cv1 = Conv(c1, c_, 1, 1)
        self.cv2 = Conv(c1, c_, 1, 1)
        self.cv3 = Conv(2 * c_, c2, 1)  # act=FReLU(c2)
        self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))
        # self.m = nn.Sequential(*[CrossConv(c_, c_, 3, 1, g, 1.0, shortcut) for _ in range(n)])

    def forward(self, x):
        return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), dim=1))


class C3TR(C3):
    # C3 module with TransformerBlock()
    def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
        super().__init__(c1, c2, n, shortcut, g, e)
        c_ = int(c2 * e)
        self.m = TransformerBlock(c_, c_, 4, n)


class C3SPP(C3):
    # C3 module with SPP()
    def __init__(self, c1, c2, k=(5, 9, 13), n=1, shortcut=True, g=1, e=0.5):
        super().__init__(c1, c2, n, shortcut, g, e)
        c_ = int(c2 * e)
        self.m = SPP(c_, c_, k)


class C3Ghost(C3):
    # C3 module with GhostBottleneck()
    def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
        super().__init__(c1, c2, n, shortcut, g, e)
        c_ = int(c2 * e)  # hidden channels
        self.m = nn.Sequential(*(GhostBottleneck(c_, c_) for _ in range(n)))

#空间金字塔池化
class SPP(nn.Module):
    # Spatial Pyramid Pooling (SPP) layer https://arxiv.org/abs/1406.4729
    def __init__(self, c1, c2, k=(5, 9, 13)):#三路最大池化
        super().__init__()
        c_ = c1 // 2  # hidden channels
        self.cv1 = Conv(c1, c_, 1, 1)
        self.cv2 = Conv(c_ * (len(k) + 1), c2, 1, 1)
        self.m = nn.ModuleList([nn.MaxPool2d(kernel_size=x, stride=1, padding=x // 2) for x in k])

    def forward(self, x):
        x = self.cv1(x)
        with warnings.catch_warnings():
            warnings.simplefilter('ignore')  # suppress torch 1.9.0 max_pool2d() warning
            return self.cv2(torch.cat([x] + [m(x) for m in self.m], 1))


class SPPF(nn.Module):
    # Spatial Pyramid Pooling - Fast (SPPF) layer for YOLOv5 by Glenn Jocher
    def __init__(self, c1, c2, k=5):  # equivalent to SPP(k=(5, 9, 13))
        super().__init__()
        c_ = c1 // 2  # hidden channels
        self.cv1 = Conv(c1, c_, 1, 1)
        self.cv2 = Conv(c_ * 4, c2, 1, 1)
        self.m = nn.MaxPool2d(kernel_size=k, stride=1, padding=k // 2)

    def forward(self, x):
        x = self.cv1(x)
        with warnings.catch_warnings():
            warnings.simplefilter('ignore')  # suppress torch 1.9.0 max_pool2d() warning
            y1 = self.m(x)
            y2 = self.m(y1)
            return self.cv2(torch.cat([x, y1, y2, self.m(y2)], 1))

#把宽度w和高度h信息整合到c空间中
class Focus(nn.Module):
    # Focus wh information into c-space
    def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True):  # ch_in, ch_out, kernel, stride, padding, groups
        super().__init__()
        self.conv = Conv(c1 * 4, c2, k, s, p, g, act)
        # self.contract = Contract(gain=2)

    def forward(self, x):  # x(b,c,w,h) -> y(b,4c,w/2,h/2)
        return self.conv(torch.cat([x[..., ::2, ::2], x[..., 1::2, ::2], x[..., ::2, 1::2], x[..., 1::2, 1::2]], 1)) #四部分切分、拼接、卷积
        # return self.conv(self.contract(x))


class GhostConv(nn.Module):
    # Ghost Convolution https://github.com/huawei-noah/ghostnet
    def __init__(self, c1, c2, k=1, s=1, g=1, act=True):  # ch_in, ch_out, kernel, stride, groups
        super().__init__()
        c_ = c2 // 2  # hidden channels
        self.cv1 = Conv(c1, c_, k, s, None, g, act)
        self.cv2 = Conv(c_, c_, 5, 1, None, c_, act)

    def forward(self, x):
        y = self.cv1(x)
        return torch.cat([y, self.cv2(y)], 1)


class GhostBottleneck(nn.Module):
    # Ghost Bottleneck https://github.com/huawei-noah/ghostnet
    def __init__(self, c1, c2, k=3, s=1):  # ch_in, ch_out, kernel, stride
        super().__init__()
        c_ = c2 // 2
        self.conv = nn.Sequential(GhostConv(c1, c_, 1, 1),  # pw
                                  DWConv(c_, c_, k, s, act=False) if s == 2 else nn.Identity(),  # dw
                                  GhostConv(c_, c2, 1, 1, act=False))  # pw-linear
        self.shortcut = nn.Sequential(DWConv(c1, c1, k, s, act=False),
                                      Conv(c1, c2, 1, 1, act=False)) if s == 2 else nn.Identity()

    def forward(self, x):
        return self.conv(x) + self.shortcut(x)


class Contract(nn.Module):
    # Contract width-height into channels, i.e. x(1,64,80,80) to x(1,256,40,40)
    def __init__(self, gain=2):
        super().__init__()
        self.gain = gain

    def forward(self, x):
        b, c, h, w = x.size()  # assert (h / s == 0) and (W / s == 0), 'Indivisible gain'
        s = self.gain
        x = x.view(b, c, h // s, s, w // s, s)  # x(1,64,40,2,40,2)
        x = x.permute(0, 3, 5, 1, 2, 4).contiguous()  # x(1,2,2,64,40,40)
        return x.view(b, c * s * s, h // s, w // s)  # x(1,256,40,40)


class Expand(nn.Module):
    # Expand channels into width-height, i.e. x(1,64,80,80) to x(1,16,160,160)
    def __init__(self, gain=2):
        super().__init__()
        self.gain = gain

    def forward(self, x):
        b, c, h, w = x.size()  # assert C / s ** 2 == 0, 'Indivisible gain'
        s = self.gain
        x = x.view(b, s, s, c // s ** 2, h, w)  # x(1,2,2,16,80,80)
        x = x.permute(0, 3, 4, 1, 5, 2).contiguous()  # x(1,16,80,2,80,2)
        return x.view(b, c // s ** 2, h * s, w * s)  # x(1,16,160,160)

#拼接
class Concat(nn.Module):
    # Concatenate a list of tensors along dimension
    def __init__(self, dimension=1):
        super().__init__()
        self.d = dimension#沿着哪个维度进行拼接

    def forward(self, x):
        return torch.cat(x, self.d)


class DetectMultiBackend(nn.Module):
    # YOLOv5 MultiBackend class for python inference on various backends
    def __init__(self, weights='yolov5s.pt', device=torch.device('cpu'), dnn=False, data=None, fp16=False):
        # Usage:
        #   PyTorch:              weights = *.pt
        #   TorchScript:                    *.torchscript
        #   ONNX Runtime:                   *.onnx
        #   ONNX OpenCV DNN:                *.onnx with --dnn
        #   OpenVINO:                       *.xml
        #   CoreML:                         *.mlmodel
        #   TensorRT:                       *.engine
        #   TensorFlow SavedModel:          *_saved_model
        #   TensorFlow GraphDef:            *.pb
        #   TensorFlow Lite:                *.tflite
        #   TensorFlow Edge TPU:            *_edgetpu.tflite
        from models.experimental import attempt_download, attempt_load  # scoped to avoid circular import

        super().__init__()
        w = str(weights[0] if isinstance(weights, list) else weights)
        pt, jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs = self.model_type(w)  # get backend
        stride, names = 64, [f'class{i}' for i in range(1000)]  # assign defaults
        w = attempt_download(w)  # download if not local
        fp16 &= (pt or jit or onnx or engine) and device.type != 'cpu'  # FP16
        if data:  # data.yaml path (optional)
            with open(data, errors='ignore') as f:
                names = yaml.safe_load(f)['names']  # class names

        if pt:  # PyTorch
            model = attempt_load(weights if isinstance(weights, list) else w, map_location=device)
            stride = max(int(model.stride.max()), 32)  # model stride
            names = model.module.names if hasattr(model, 'module') else model.names  # get class names
            model.half() if fp16 else model.float()
            self.model = model  # explicitly assign for to(), cpu(), cuda(), half()
        elif jit:  # TorchScript
            LOGGER.info(f'Loading {w} for TorchScript inference...')
            extra_files = {'config.txt': ''}  # model metadata
            model = torch.jit.load(w, _extra_files=extra_files)
            model.half() if fp16 else model.float()
            if extra_files['config.txt']:
                d = json.loads(extra_files['config.txt'])  # extra_files dict
                stride, names = int(d['stride']), d['names']
        elif dnn:  # ONNX OpenCV DNN
            LOGGER.info(f'Loading {w} for ONNX OpenCV DNN inference...')
            check_requirements(('opencv-python>=4.5.4',))
            net = cv2.dnn.readNetFromONNX(w)
        elif onnx:  # ONNX Runtime
            LOGGER.info(f'Loading {w} for ONNX Runtime inference...')
            cuda = torch.cuda.is_available()
            check_requirements(('onnx', 'onnxruntime-gpu' if cuda else 'onnxruntime'))
            import onnxruntime
            providers = ['CUDAExecutionProvider', 'CPUExecutionProvider'] if cuda else ['CPUExecutionProvider']
            session = onnxruntime.InferenceSession(w, providers=providers)
        elif xml:  # OpenVINO
            LOGGER.info(f'Loading {w} for OpenVINO inference...')
            check_requirements(('openvino-dev',))  # requires openvino-dev: https://pypi.org/project/openvino-dev/
            import openvino.inference_engine as ie
            core = ie.IECore()
            if not Path(w).is_file():  # if not *.xml
                w = next(Path(w).glob('*.xml'))  # get *.xml file from *_openvino_model dir
            network = core.read_network(model=w, weights=Path(w).with_suffix('.bin'))  # *.xml, *.bin paths
            executable_network = core.load_network(network, device_name='CPU', num_requests=1)
        elif engine:  # TensorRT
            LOGGER.info(f'Loading {w} for TensorRT inference...')
            import tensorrt as trt  # https://developer.nvidia.com/nvidia-tensorrt-download
            check_version(trt.__version__, '7.0.0', hard=True)  # require tensorrt>=7.0.0
            Binding = namedtuple('Binding', ('name', 'dtype', 'shape', 'data', 'ptr'))
            logger = trt.Logger(trt.Logger.INFO)
            with open(w, 'rb') as f, trt.Runtime(logger) as runtime:
                model = runtime.deserialize_cuda_engine(f.read())
            bindings = OrderedDict()
            fp16 = False  # default updated below
            for index in range(model.num_bindings):
                name = model.get_binding_name(index)
                dtype = trt.nptype(model.get_binding_dtype(index))
                shape = tuple(model.get_binding_shape(index))
                data = torch.from_numpy(np.empty(shape, dtype=np.dtype(dtype))).to(device)
                bindings[name] = Binding(name, dtype, shape, data, int(data.data_ptr()))
                if model.binding_is_input(index) and dtype == np.float16:
                    fp16 = True
            binding_addrs = OrderedDict((n, d.ptr) for n, d in bindings.items())
            context = model.create_execution_context()
            batch_size = bindings['images'].shape[0]
        elif coreml:  # CoreML
            LOGGER.info(f'Loading {w} for CoreML inference...')
            import coremltools as ct
            model = ct.models.MLModel(w)
        else:  # TensorFlow (SavedModel, GraphDef, Lite, Edge TPU)
            if saved_model:  # SavedModel
                LOGGER.info(f'Loading {w} for TensorFlow SavedModel inference...')
                import tensorflow as tf
                keras = False  # assume TF1 saved_model
                model = tf.keras.models.load_model(w) if keras else tf.saved_model.load(w)
            elif pb:  # GraphDef https://www.tensorflow.org/guide/migrate#a_graphpb_or_graphpbtxt
                LOGGER.info(f'Loading {w} for TensorFlow GraphDef inference...')
                import tensorflow as tf

                def wrap_frozen_graph(gd, inputs, outputs):
                    x = tf.compat.v1.wrap_function(lambda: tf.compat.v1.import_graph_def(gd, name=""), [])  # wrapped
                    ge = x.graph.as_graph_element
                    return x.prune(tf.nest.map_structure(ge, inputs), tf.nest.map_structure(ge, outputs))

                gd = tf.Graph().as_graph_def()  # graph_def
                gd.ParseFromString(open(w, 'rb').read())
                frozen_func = wrap_frozen_graph(gd, inputs="x:0", outputs="Identity:0")
            elif tflite or edgetpu:  # https://www.tensorflow.org/lite/guide/python#install_tensorflow_lite_for_python
                try:  # https://coral.ai/docs/edgetpu/tflite-python/#update-existing-tf-lite-code-for-the-edge-tpu
                    from tflite_runtime.interpreter import Interpreter, load_delegate
                except ImportError:
                    import tensorflow as tf
                    Interpreter, load_delegate = tf.lite.Interpreter, tf.lite.experimental.load_delegate,
                if edgetpu:  # Edge TPU https://coral.ai/software/#edgetpu-runtime
                    LOGGER.info(f'Loading {w} for TensorFlow Lite Edge TPU inference...')
                    delegate = {'Linux': 'libedgetpu.so.1',
                                'Darwin': 'libedgetpu.1.dylib',
                                'Windows': 'edgetpu.dll'}[platform.system()]
                    interpreter = Interpreter(model_path=w, experimental_delegates=[load_delegate(delegate)])
                else:  # Lite
                    LOGGER.info(f'Loading {w} for TensorFlow Lite inference...')
                    interpreter = Interpreter(model_path=w)  # load TFLite model
                interpreter.allocate_tensors()  # allocate
                input_details = interpreter.get_input_details()  # inputs
                output_details = interpreter.get_output_details()  # outputs
            elif tfjs:
                raise Exception('ERROR: YOLOv5 TF.js inference is not supported')
        self.__dict__.update(locals())  # assign all variables to self

    def forward(self, im, augment=False, visualize=False, val=False):
        # YOLOv5 MultiBackend inference
        b, ch, h, w = im.shape  # batch, channel, height, width
        if self.pt or self.jit:  # PyTorch
            y = self.model(im) if self.jit else self.model(im, augment=augment, visualize=visualize)
            return y if val else y[0]
        elif self.dnn:  # ONNX OpenCV DNN
            im = im.cpu().numpy()  # torch to numpy
            self.net.setInput(im)
            y = self.net.forward()
        elif self.onnx:  # ONNX Runtime
            im = im.cpu().numpy()  # torch to numpy
            y = self.session.run([self.session.get_outputs()[0].name], {self.session.get_inputs()[0].name: im})[0]
        elif self.xml:  # OpenVINO
            im = im.cpu().numpy()  # FP32
            desc = self.ie.TensorDesc(precision='FP32', dims=im.shape, layout='NCHW')  # Tensor Description
            request = self.executable_network.requests[0]  # inference request
            request.set_blob(blob_name='images', blob=self.ie.Blob(desc, im))  # name=next(iter(request.input_blobs))
            request.infer()
            y = request.output_blobs['output'].buffer  # name=next(iter(request.output_blobs))
        elif self.engine:  # TensorRT
            assert im.shape == self.bindings['images'].shape, (im.shape, self.bindings['images'].shape)
            self.binding_addrs['images'] = int(im.data_ptr())
            self.context.execute_v2(list(self.binding_addrs.values()))
            y = self.bindings['output'].data
        elif self.coreml:  # CoreML
            im = im.permute(0, 2, 3, 1).cpu().numpy()  # torch BCHW to numpy BHWC shape(1,320,192,3)
            im = Image.fromarray((im[0] * 255).astype('uint8'))
            # im = im.resize((192, 320), Image.ANTIALIAS)
            y = self.model.predict({'image': im})  # coordinates are xywh normalized
            if 'confidence' in y:
                box = xywh2xyxy(y['coordinates'] * [[w, h, w, h]])  # xyxy pixels
                conf, cls = y['confidence'].max(1), y['confidence'].argmax(1).astype(np.float)
                y = np.concatenate((box, conf.reshape(-1, 1), cls.reshape(-1, 1)), 1)
            else:
                k = 'var_' + str(sorted(int(k.replace('var_', '')) for k in y)[-1])  # output key
                y = y[k]  # output
        else:  # TensorFlow (SavedModel, GraphDef, Lite, Edge TPU)
            im = im.permute(0, 2, 3, 1).cpu().numpy()  # torch BCHW to numpy BHWC shape(1,320,192,3)
            if self.saved_model:  # SavedModel
                y = (self.model(im, training=False) if self.keras else self.model(im)[0]).numpy()
            elif self.pb:  # GraphDef
                y = self.frozen_func(x=self.tf.constant(im)).numpy()
            else:  # Lite or Edge TPU
                input, output = self.input_details[0], self.output_details[0]
                int8 = input['dtype'] == np.uint8  # is TFLite quantized uint8 model
                if int8:
                    scale, zero_point = input['quantization']
                    im = (im / scale + zero_point).astype(np.uint8)  # de-scale
                self.interpreter.set_tensor(input['index'], im)
                self.interpreter.invoke()
                y = self.interpreter.get_tensor(output['index'])
                if int8:
                    scale, zero_point = output['quantization']
                    y = (y.astype(np.float32) - zero_point) * scale  # re-scale
            y[..., :4] *= [w, h, w, h]  # xywh normalized to pixels

        if isinstance(y, np.ndarray):
            y = torch.tensor(y, device=self.device)
        return (y, []) if val else y

    def warmup(self, imgsz=(1, 3, 640, 640)):
        # Warmup model by running inference once
        if any((self.pt, self.jit, self.onnx, self.engine, self.saved_model, self.pb)):  # warmup types
            if self.device.type != 'cpu':  # only warmup GPU models
                im = torch.zeros(*imgsz, dtype=torch.half if self.fp16 else torch.float, device=self.device)  # input
                for _ in range(2 if self.jit else 1):  #
                    self.forward(im)  # warmup

    @staticmethod
    def model_type(p='path/to/model.pt'):
        # Return model type from model path, i.e. path='path/to/model.onnx' -> type=onnx
        from export import export_formats
        suffixes = list(export_formats().Suffix) + ['.xml']  # export suffixes
        check_suffix(p, suffixes)  # checks
        p = Path(p).name  # eliminate trailing separators
        pt, jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs, xml2 = (s in p for s in suffixes)
        xml |= xml2  # *_openvino_model or *.xml
        tflite &= not edgetpu  # *.tflite
        return pt, jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs

#自动调整输入预处理(yolov5没有用)
class AutoShape(nn.Module):
    # YOLOv5 input-robust model wrapper for passing cv2/np/PIL/torch inputs. Includes preprocessing, inference and NMS
    conf = 0.25  # NMS confidence threshold 置信度阈值
    iou = 0.45  # NMS IoU threshold  iou阈值
    agnostic = False  # NMS class-agnostic
    multi_label = False  # NMS multiple labels per box
    classes = None  # (optional list) filter by class, i.e. = [0, 15, 16] for COCO persons, cats and dogs
    max_det = 1000  # maximum number of detections per image
    amp = False  # Automatic Mixed Precision (AMP) inference

    def __init__(self, model):
        super().__init__()
        LOGGER.info('Adding AutoShape... ')
        copy_attr(self, model, include=('yaml', 'nc', 'hyp', 'names', 'stride', 'abc'), exclude=())  # copy attributes
        self.dmb = isinstance(model, DetectMultiBackend)  # DetectMultiBackend() instance
        self.pt = not self.dmb or model.pt  # PyTorch model
        self.model = model.eval()

    def _apply(self, fn):
        # Apply to(), cpu(), cuda(), half() to model tensors that are not parameters or registered buffers
        self = super()._apply(fn)
        if self.pt:
            m = self.model.model.model[-1] if self.dmb else self.model.model[-1]  # Detect()
            m.stride = fn(m.stride)
            m.grid = list(map(fn, m.grid))
            if isinstance(m.anchor_grid, list):
                m.anchor_grid = list(map(fn, m.anchor_grid))
        return self

    @torch.no_grad()
    def forward(self, imgs, size=640, augment=False, profile=False):
        # Inference from various sources. For height=640, width=1280, RGB images example inputs are:
        #   file:       imgs = 'data/images/zidane.jpg'  # str or PosixPath
        #   URI:             = 'https://ultralytics.com/images/zidane.jpg'
        #   OpenCV:          = cv2.imread('image.jpg')[:,:,::-1]  # HWC BGR to RGB x(640,1280,3)
        #   PIL:             = Image.open('image.jpg') or ImageGrab.grab()  # HWC x(640,1280,3)
        #   numpy:           = np.zeros((640,1280,3))  # HWC
        #   torch:           = torch.zeros(16,3,320,640)  # BCHW (scaled to size=640, 0-1 values)
        #   multiple:        = [Image.open('image1.jpg'), Image.open('image2.jpg'), ...]  # list of images

        t = [time_sync()]
        p = next(self.model.parameters()) if self.pt else torch.zeros(1)  # for device and type
        autocast = self.amp and (p.device.type != 'cpu')  # Automatic Mixed Precision (AMP) inference
        if isinstance(imgs, torch.Tensor):  # torch
            with amp.autocast(enabled=autocast):
                return self.model(imgs.to(p.device).type_as(p), augment, profile)  # inference

        # Pre-process
        n, imgs = (len(imgs), imgs) if isinstance(imgs, list) else (1, [imgs])  # number of images, list of images
        shape0, shape1, files = [], [], []  # image and inference shapes, filenames
        for i, im in enumerate(imgs):
            f = f'image{i}'  # filename
            if isinstance(im, (str, Path)):  # filename or uri
                im, f = Image.open(requests.get(im, stream=True).raw if str(im).startswith('http') else im), im
                im = np.asarray(exif_transpose(im))
            elif isinstance(im, Image.Image):  # PIL Image
                im, f = np.asarray(exif_transpose(im)), getattr(im, 'filename', f) or f
            files.append(Path(f).with_suffix('.jpg').name)
            if im.shape[0] < 5:  # image in CHW
                im = im.transpose((1, 2, 0))  # reverse dataloader .transpose(2, 0, 1)
            im = im[..., :3] if im.ndim == 3 else np.tile(im[..., None], 3)  # enforce 3ch input
            s = im.shape[:2]  # HWC
            shape0.append(s)  # image shape
            g = (size / max(s))  # gain
            shape1.append([y * g for y in s])
            imgs[i] = im if im.data.contiguous else np.ascontiguousarray(im)  # update
        shape1 = [make_divisible(x, self.stride) if self.pt else size for x in np.array(shape1).max(0)]  # inf shape
        x = [letterbox(im, new_shape=shape1, auto=False)[0] for im in imgs]  # pad
        x = np.ascontiguousarray(np.array(x).transpose((0, 3, 1, 2)))  # stack and BHWC to BCHW
        x = torch.from_numpy(x).to(p.device).type_as(p) / 255  # uint8 to fp16/32
        t.append(time_sync())

        with amp.autocast(enabled=autocast):
            # Inference
            y = self.model(x, augment, profile)  # forward
            t.append(time_sync())

            # Post-process
            y = non_max_suppression(y if self.dmb else y[0], self.conf, iou_thres=self.iou, classes=self.classes,
                                    agnostic=self.agnostic, multi_label=self.multi_label, max_det=self.max_det)  # NMS
            for i in range(n):
                scale_coords(shape1, y[i][:, :4], shape0[i])

            t.append(time_sync())
            return Detections(imgs, y, files, t, self.names, x.shape)


class Detections:
    # YOLOv5 detections class for inference results
    def __init__(self, imgs, pred, files, times=(0, 0, 0, 0), names=None, shape=None):
        super().__init__()
        d = pred[0].device  # device
        gn = [torch.tensor([*(im.shape[i] for i in [1, 0, 1, 0]), 1, 1], device=d) for im in imgs]  # normalizations
        self.imgs = imgs  # list of images as numpy arrays
        self.pred = pred  # list of tensors pred[0] = (xyxy, conf, cls)
        self.names = names  # class names
        self.files = files  # image filenames
        self.times = times  # profiling times
        self.xyxy = pred  # xyxy pixels
        self.xywh = [xyxy2xywh(x) for x in pred]  # xywh pixels
        self.xyxyn = [x / g for x, g in zip(self.xyxy, gn)]  # xyxy normalized
        self.xywhn = [x / g for x, g in zip(self.xywh, gn)]  # xywh normalized
        self.n = len(self.pred)  # number of images (batch size)
        self.t = tuple((times[i + 1] - times[i]) * 1000 / self.n for i in range(3))  # timestamps (ms)
        self.s = shape  # inference BCHW shape

    def display(self, pprint=False, show=False, save=False, crop=False, render=False, save_dir=Path('')):
        crops = []
        for i, (im, pred) in enumerate(zip(self.imgs, self.pred)):
            s = f'image {i + 1}/{len(self.pred)}: {im.shape[0]}x{im.shape[1]} '  # string
            if pred.shape[0]:
                for c in pred[:, -1].unique():
                    n = (pred[:, -1] == c).sum()  # detections per class
                    s += f"{n} {self.names[int(c)]}{'s' * (n > 1)}, "  # add to string
                if show or save or render or crop:
                    annotator = Annotator(im, example=str(self.names))
                    for *box, conf, cls in reversed(pred):  # xyxy, confidence, class
                        label = f'{self.names[int(cls)]} {conf:.2f}'
                        if crop:
                            file = save_dir / 'crops' / self.names[int(cls)] / self.files[i] if save else None
                            crops.append({'box': box, 'conf': conf, 'cls': cls, 'label': label,
                                          'im': save_one_box(box, im, file=file, save=save)})
                        else:  # all others
                            annotator.box_label(box, label, color=colors(cls))
                    im = annotator.im
            else:
                s += '(no detections)'

            im = Image.fromarray(im.astype(np.uint8)) if isinstance(im, np.ndarray) else im  # from np
            if pprint:
                LOGGER.info(s.rstrip(', '))
            if show:
                im.show(self.files[i])  # show
            if save:
                f = self.files[i]
                im.save(save_dir / f)  # save
                if i == self.n - 1:
                    LOGGER.info(f"Saved {self.n} image{'s' * (self.n > 1)} to {colorstr('bold', save_dir)}")
            if render:
                self.imgs[i] = np.asarray(im)
        if crop:
            if save:
                LOGGER.info(f'Saved results to {save_dir}\n')
            return crops

    def print(self):
        self.display(pprint=True)  # print results
        LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {tuple(self.s)}' %
                    self.t)

    def show(self):
        self.display(show=True)  # show results

    def save(self, save_dir='runs/detect/exp'):
        save_dir = increment_path(save_dir, exist_ok=save_dir != 'runs/detect/exp', mkdir=True)  # increment save_dir
        self.display(save=True, save_dir=save_dir)  # save results

    def crop(self, save=True, save_dir='runs/detect/exp'):
        save_dir = increment_path(save_dir, exist_ok=save_dir != 'runs/detect/exp', mkdir=True) if save else None
        return self.display(crop=True, save=save, save_dir=save_dir)  # crop results

    def render(self):
        self.display(render=True)  # render results
        return self.imgs

    def pandas(self):
        # return detections as pandas DataFrames, i.e. print(results.pandas().xyxy[0])
        new = copy(self)  # return copy
        ca = 'xmin', 'ymin', 'xmax', 'ymax', 'confidence', 'class', 'name'  # xyxy columns
        cb = 'xcenter', 'ycenter', 'width', 'height', 'confidence', 'class', 'name'  # xywh columns
        for k, c in zip(['xyxy', 'xyxyn', 'xywh', 'xywhn'], [ca, ca, cb, cb]):
            a = [[x[:5] + [int(x[5]), self.names[int(x[5])]] for x in x.tolist()] for x in getattr(self, k)]  # update
            setattr(new, k, [pd.DataFrame(x, columns=c) for x in a])
        return new

    def tolist(self):
        # return a list of Detections objects, i.e. 'for result in results.tolist():'
        r = range(self.n)  # iterable
        x = [Detections([self.imgs[i]], [self.pred[i]], [self.files[i]], self.times, self.names, self.s) for i in r]
        # for d in x:
        #    for k in ['imgs', 'pred', 'xyxy', 'xyxyn', 'xywh', 'xywhn']:
        #        setattr(d, k, getattr(d, k)[0])  # pop out of list
        return x

    def __len__(self):
        return self.n

#把目标检测的结果再次分类 第两级分类 
class Classify(nn.Module):
    # Classification head, i.e. x(b,c1,20,20) to x(b,c2)
    def __init__(self, c1, c2, k=1, s=1, p=None, g=1):  # ch_in, ch_out, kernel, stride, padding, groups
        super().__init__()
        self.aap = nn.AdaptiveAvgPool2d(1)  # to x(b,c1,1,1)
        self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g)  # to x(b,c2,1,1)
        self.flat = nn.Flatten()#展平

    def forward(self, x):
        z = torch.cat([self.aap(y) for y in (x if isinstance(x, list) else [x])], 1)  # cat if list
        return self.flat(self.conv(z))  # flatten to x(b,c2)

2.3  models/yolo.py 整个网络构建

try:
    import thop  # for FLOPs computation
except ImportError:
    thop = None

#对特征图检测
class Detect(nn.Module):
    stride = None  # strides computed during build
    onnx_dynamic = False  # ONNX export parameter

    def __init__(self, nc=80, anchors=(), ch=(), inplace=True):  # detection layer
        super().__init__()
        self.nc = nc  # number of classes 类别数量coco20为例
        self.no = nc + 5  # number of outputs per anchor 四个坐标信息+目标得分
        self.nl = len(anchors)  # number of detection layers 不同尺度特征图层数
        self.na = len(anchors[0]) // 2  # number of anchors 每个特征图anchors数
        self.grid = [torch.zeros(1)] * self.nl  # init grid
        self.anchor_grid = [torch.zeros(1)] * self.nl  # init anchor grid
        self.register_buffer('anchors', torch.tensor(anchors).float().view(self.nl, -1, 2))  # shape(nl,na,2)
        self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch)  # output conv x是通道取值 na是3 no是25
        self.inplace = inplace  # use in-place ops (e.g. slice assignment)

    def forward(self, x):
        z = []  # inference output
        for i in range(self.nl):
            x[i] = self.m[i](x[i])  # conv
            bs, _, ny, nx = x[i].shape  # x(bs,255,20,20) to x(bs,3,20,20,85)
            x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()

            if not self.training:  # inference
                if self.onnx_dynamic or self.grid[i].shape[2:4] != x[i].shape[2:4]:
                    self.grid[i], self.anchor_grid[i] = self._make_grid(nx, ny, i)

                y = x[i].sigmoid()
                if self.inplace:
                    y[..., 0:2] = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i]  # xy
                    y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]  # wh
                else:  # for YOLOv5 on AWS Inferentia https://github.com/ultralytics/yolov5/pull/2953
                    xy = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i]  # xy
                    wh = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]  # wh
                    y = torch.cat((xy, wh, y[..., 4:]), -1)
                z.append(y.view(bs, -1, self.no))

        return x if self.training else (torch.cat(z, 1), x) #返回预测框坐标、得分和分类

#划分单元网格
    def _make_grid(self, nx=20, ny=20, i=0):
        d = self.anchors[i].device
        if check_version(torch.__version__, '1.10.0'):  # torch>=1.10.0 meshgrid workaround for torch>=0.7 compatibility
            yv, xv = torch.meshgrid([torch.arange(ny, device=d), torch.arange(nx, device=d)], indexing='ij')
        else:
            yv, xv = torch.meshgrid([torch.arange(ny, device=d), torch.arange(nx, device=d)])
        grid = torch.stack((xv, yv), 2).expand((1, self.na, ny, nx, 2)).float()
        anchor_grid = (self.anchors[i].clone() * self.stride[i]) \
            .view((1, self.na, 1, 1, 2)).expand((1, self.na, ny, nx, 2)).float()
        return grid, anchor_grid

#网络模型
class Model(nn.Module):
    def __init__(self, cfg='yolov5s.yaml', ch=3, nc=None, anchors=None):  # model, input channels, number of classes
        super().__init__()
        if isinstance(cfg, dict):
            self.yaml = cfg  # model dict
        else:  # is *.yaml 获得yaml文件
            import yaml  # for torch hub
            self.yaml_file = Path(cfg).name
            with open(cfg, encoding='ascii', errors='ignore') as f:
                self.yaml = yaml.safe_load(f)  # model dict 加载yaml文件 以字典的形式

        # Define model
        ch = self.yaml['ch'] = self.yaml.get('ch', ch)  # input channels
        if nc and nc != self.yaml['nc']:
            LOGGER.info(f"Overriding model.yaml nc={self.yaml['nc']} with nc={nc}")
            self.yaml['nc'] = nc  # override yaml value
        if anchors:
            LOGGER.info(f'Overriding model.yaml anchors with anchors={anchors}')
            self.yaml['anchors'] = round(anchors)  # override yaml value
        self.model, self.save = parse_model(deepcopy(self.yaml), ch=[ch])  # model, savelist
        self.names = [str(i) for i in range(self.yaml['nc'])]  # default names
        self.inplace = self.yaml.get('inplace', True)

        # Build strides, anchors
        m = self.model[-1]  # 读取Detect()
        if isinstance(m, Detect):
            s = 256  # 2x min stride
            m.inplace = self.inplace
            m.stride = torch.tensor([s / x.shape[-2] for x in self.forward(torch.zeros(1, ch, s, s))])  # forward
            m.anchors /= m.stride.view(-1, 1, 1)
            check_anchor_order(m) #检查anchor顺序和stride顺序是否一致
            self.stride = m.stride
            self._initialize_biases()  # only run once

        # Init weights, biases 初始化
        initialize_weights(self)
        self.info()
        LOGGER.info('')

    #在测试时候做数据增强
    #python detect.py --weights yolov5s.pt --img 832 --source ./inference/images/ --augment
    #--img大小需要大于640设置为832
    def forward(self, x, augment=False, profile=False, visualize=False):
        if augment:
            return self._forward_augment(x)  # augmented inference, None
        return self._forward_once(x, profile, visualize)  # single-scale inference, train

    def _forward_augment(self, x):
        img_size = x.shape[-2:]  # height, width
        s = [1, 0.83, 0.67]  # scales
        f = [None, 3, None]  # flips (2-ud, 3-lr)
        y = []  # outputs
        for si, fi in zip(s, f):
            xi = scale_img(x.flip(fi) if fi else x, si, gs=int(self.stride.max())) #图像尺寸改变
            yi = self._forward_once(xi)[0]  # forward
            # cv2.imwrite(f'img_{si}.jpg', 255 * xi[0].cpu().numpy().transpose((1, 2, 0))[:, :, ::-1])  # save
            yi = self._descale_pred(yi, fi, si, img_size)
            y.append(yi)
        y = self._clip_augmented(y)  # clip augmented tails
        return torch.cat(y, 1), None  # augmented inference, train

    #输入经过网络每一层
    def _forward_once(self, x, profile=False, visualize=False):
        y, dt = [], []  # outputs
        for m in self.model:
            if m.f != -1:  # if not from previous layer
                x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f]  # from earlier layers
            if profile:
                self._profile_one_layer(m, x, dt)
            x = m(x)  # run
            y.append(x if m.i in self.save else None)  # save output
            if visualize:
                feature_visualization(x, m.type, m.i, save_dir=visualize)
        return x

    def _descale_pred(self, p, flips, scale, img_size):
        # de-scale predictions following augmented inference (inverse operation)
        if self.inplace:
            p[..., :4] /= scale  # de-scale
            if flips == 2:
                p[..., 1] = img_size[0] - p[..., 1]  # de-flip ud
            elif flips == 3:
                p[..., 0] = img_size[1] - p[..., 0]  # de-flip lr
        else:
            x, y, wh = p[..., 0:1] / scale, p[..., 1:2] / scale, p[..., 2:4] / scale  # de-scale
            if flips == 2:
                y = img_size[0] - y  # de-flip ud
            elif flips == 3:
                x = img_size[1] - x  # de-flip lr
            p = torch.cat((x, y, wh, p[..., 4:]), -1)
        return p

    def _clip_augmented(self, y):
        # Clip YOLOv5 augmented inference tails
        nl = self.model[-1].nl  # number of detection layers (P3-P5)
        g = sum(4 ** x for x in range(nl))  # grid points
        e = 1  # exclude layer count
        i = (y[0].shape[1] // g) * sum(4 ** x for x in range(e))  # indices
        y[0] = y[0][:, :-i]  # large
        i = (y[-1].shape[1] // g) * sum(4 ** (nl - 1 - x) for x in range(e))  # indices
        y[-1] = y[-1][:, i:]  # small
        return y

    def _profile_one_layer(self, m, x, dt):
        c = isinstance(m, Detect)  # is final layer, copy input as inplace fix
        o = thop.profile(m, inputs=(x.copy() if c else x,), verbose=False)[0] / 1E9 * 2 if thop else 0  # FLOPs
        t = time_sync()
        for _ in range(10):
            m(x.copy() if c else x)
        dt.append((time_sync() - t) * 100)
        if m == self.model[0]:
            LOGGER.info(f"{'time (ms)':>10s} {'GFLOPs':>10s} {'params':>10s}  {'module'}")
        LOGGER.info(f'{dt[-1]:10.2f} {o:10.2f} {m.np:10.0f}  {m.type}')
        if c:
            LOGGER.info(f"{sum(dt):10.2f} {'-':>10s} {'-':>10s}  Total")

    #初始化detect组件的偏置
    def _initialize_biases(self, cf=None):  # initialize biases into Detect(), cf is class frequency
        # https://arxiv.org/abs/1708.02002 section 3.3
        # cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1.
        m = self.model[-1]  # Detect() module
        for mi, s in zip(m.m, m.stride):  # from
            b = mi.bias.view(m.na, -1)  # conv.bias(255) to (3,85)
            b.data[:, 4] += math.log(8 / (640 / s) ** 2)  # obj (8 objects per 640 image)
            b.data[:, 5:] += math.log(0.6 / (m.nc - 0.999999)) if cf is None else torch.log(cf / cf.sum())  # cls
            mi.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)

    def _print_biases(self):
        m = self.model[-1]  # Detect() module
        for mi in m.m:  # from
            b = mi.bias.detach().view(m.na, -1).T  # conv.bias(255) to (3,85)
            LOGGER.info(
                ('%6g Conv2d.bias:' + '%10.3g' * 6) % (mi.weight.shape[1], *b[:5].mean(1).tolist(), b[5:].mean()))

    # def _print_weights(self):
    #     for m in self.model.modules():
    #         if type(m) is Bottleneck:
    #             LOGGER.info('%10.3g' % (m.w.detach().sigmoid() * 2))  # shortcut weights

    #卷积和归一化进行融合
    def fuse(self):  # fuse model Conv2d() + BatchNorm2d() layers
        LOGGER.info('Fusing layers... ')
        for m in self.model.modules():
            if isinstance(m, (Conv, DWConv)) and hasattr(m, 'bn'):
                m.conv = fuse_conv_and_bn(m.conv, m.bn)  # update conv
                delattr(m, 'bn')  # remove batchnorm
                m.forward = m.forward_fuse  # update forward
        self.info()
        return self

    def info(self, verbose=False, img_size=640):  # print model information
        model_info(self, verbose, img_size)

    def _apply(self, fn):
        # Apply to(), cpu(), cuda(), half() to model tensors that are not parameters or registered buffers
        self = super()._apply(fn)
        m = self.model[-1]  # Detect()
        if isinstance(m, Detect):
            m.stride = fn(m.stride)
            m.grid = list(map(fn, m.grid))
            if isinstance(m.anchor_grid, list):
                m.anchor_grid = list(map(fn, m.anchor_grid))
        return self

#解析网络配置文件构建模型
def parse_model(d, ch):  # model_dict, input_channels(3)
    LOGGER.info(f"\n{'':>3}{'from':>18}{'n':>3}{'params':>10}  {'module':<40}{'arguments':<30}")
    anchors, nc, gd, gw = d['anchors'], d['nc'], d['depth_multiple'], d['width_multiple']
    na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors  # number of anchors
    no = na * (nc + 5)  # number of outputs = anchors * (classes + 5)

    layers, save, c2 = [], [], ch[-1]  # layers, savelist, ch out
    for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']):  # from, number, module, args
        m = eval(m) if isinstance(m, str) else m  # eval strings
        for j, a in enumerate(args):
            try:
                args[j] = eval(a) if isinstance(a, str) else a  # eval strings
            except NameError:
                pass
        #控制深度的代码
        n = n_ = max(round(n * gd), 1) if n > 1 else n  # depth gain
        if m in [Conv, GhostConv, Bottleneck, GhostBottleneck, SPP, SPPF, DWConv, MixConv2d, Focus, CrossConv,
                 BottleneckCSP, C3, C3TR, C3SPP, C3Ghost]:
            c1, c2 = ch[f], args[0]
            if c2 != no:  # if not output
                c2 = make_divisible(c2 * gw, 8)

            args = [c1, c2, *args[1:]]
            if m in [BottleneckCSP, C3, C3TR, C3Ghost]:
                args.insert(2, n)  # number of repeats
                n = 1
        elif m is nn.BatchNorm2d:
            args = [ch[f]]
        elif m is Concat:
            c2 = sum(ch[x] for x in f)
        elif m is Detect:
            args.append([ch[x] for x in f])
            if isinstance(args[1], int):  # number of anchors
                args[1] = [list(range(args[1] * 2))] * len(f)
        elif m is Contract:
            c2 = ch[f] * args[0] ** 2
        elif m is Expand:
            c2 = ch[f] // args[0] ** 2
        else:
            c2 = ch[f]

        m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args)  # module
        t = str(m)[8:-2].replace('__main__.', '')  # module type
        np = sum(x.numel() for x in m_.parameters())  # number params
        m_.i, m_.f, m_.type, m_.np = i, f, t, np  # attach index, 'from' index, type, number params
        LOGGER.info(f'{i:>3}{str(f):>18}{n_:>3}{np:10.0f}  {t:<40}{str(args):<30}')  # print
        save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1)  # append to savelist
        layers.append(m_)
        if i == 0:
            ch = []
        ch.append(c2)
    return nn.Sequential(*layers), sorted(save) 


if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('--cfg', type=str, default='yolov5s.yaml', help='model.yaml')
    parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
    parser.add_argument('--profile', action='store_true', help='profile model speed')
    parser.add_argument('--test', action='store_true', help='test all yolo*.yaml')
    opt = parser.parse_args()
    opt.cfg = check_yaml(opt.cfg)  # check YAML
    print_args(FILE.stem, opt)
    device = select_device(opt.device)

    # Create model
    model = Model(opt.cfg).to(device)
    model.train()

    # Profile
    if opt.profile:
        img = torch.rand(8 if torch.cuda.is_available() else 1, 3, 640, 640).to(device)
        y = model(img, profile=True)

    # Test all models
    if opt.test:
        for cfg in Path(ROOT / 'models').rglob('yolo*.yaml'):
            try:
                _ = Model(cfg)
            except Exception as e:
                print(f'Error in {cfg}: {e}')

    # Tensorboard (not working https://github.com/ultralytics/yolov5/issues/2898)
    # from torch.utils.tensorboard import SummaryWriter
    # tb_writer = SummaryWriter('.')
    # LOGGER.info("Run 'tensorboard --logdir=models' to view tensorboard at http://localhost:6006/")
    # tb_writer.add_graph(torch.jit.trace(model, img, strict=False), [])  # add model graph

2.4  输入设定代码

2.4.1 统一输入图片大小

yolo采用保持原图像宽高比

utils/augmentations

#图像缩放:保持图片宽高不变,剩下部分采用灰色填充
def letterbox(im, new_shape=(640, 640), color=(114, 114, 114), auto=True, scaleFill=False, scaleup=True, stride=32): #color是填充的颜色
    # Resize and pad image while meeting stride-multiple constraints
    shape = im.shape[:2]  # current shape [height, width]
    if isinstance(new_shape, int):
        new_shape = (new_shape, new_shape)
    
    # Scale ratio (new / old)
    r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
    #缩放到输入大小的时候,如果没有上采样,则只进行下采样,上采样会使图片模糊,影响性能
    if not scaleup:  # only scale down, do not scale up (for better val mAP)
        r = min(r, 1.0)

    # Compute padding 计算填充
    ratio = r, r  # width, height ratios
    new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
    dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1]  # wh padding
    if auto:  # minimum rectangle 获取最小的矩阵填充
        dw, dh = np.mod(dw, stride), np.mod(dh, stride)  # wh padding
    #如果scaleFill=True,则不进行填充,直接由resize改变
    elif scaleFill:  # stretch
        dw, dh = 0.0, 0.0
        new_unpad = (new_shape[1], new_shape[0])
        ratio = new_shape[1] / shape[1], new_shape[0] / shape[0]  # width, height ratios
    #计算上下填充大小
    dw /= 2  # divide padding into 2 sides
    dh /= 2

    if shape[::-1] != new_unpad:  # resize
        im = cv2.resize(im, new_unpad, interpolation=cv2.INTER_LINEAR)
    #什么位置进行填充
    top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
    left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
    #进行填充
    im = cv2.copyMakeBorder(im, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color)  # add border
    return im, ratio, (dw, dh)

2.4.2 数据增强 data augmentation

通过图片处理方法,人为增加图片数据。(a)剪裁、旋转、色调、比例、亮度

Mosaic方法

yolov5采用Mosaic方法,把几个图拼接一个大图,小图在拼接时候还会进行随机的处理。

 

untils/datasets.py

    def load_mosaic(self, index): #self自定义数据集 index要增强的索引
        # YOLOv5 4-mosaic loader. Loads 1 image + 3 random images into a 4-image mosaic
        labels4, segments4 = [], []
        s = self.img_size
        #随机选取一个中心点
        yc, xc = (int(random.uniform(-x, 2 * s + x)) for x in self.mosaic_border)  # mosaic center x, y
        indices = [index] + random.choices(self.indices, k=3)  # 3 additional image indices
        #随机取其他三张图片索引
        random.shuffle(indices)
        for i, index in enumerate(indices):
            # Load image
            img, _, (h, w) = self.load_image(index)#load_image 加载图片根据设定的输入大小与图片原大小的比例进行resize

            # place img in img4
            if i == 0:  # top left
                #初始化大图
                img4 = np.full((s * 2, s * 2, img.shape[2]), 114, dtype=np.uint8)  # base image with 4 tiles
                #把原图放到左上角
                x1a, y1a, x2a, y2a = max(xc - w, 0), max(yc - h, 0), xc, yc  # xmin, ymin, xmax, ymax (large image)
                #选取小图上的位置 如果图片越界会裁剪
                x1b, y1b, x2b, y2b = w - (x2a - x1a), h - (y2a - y1a), w, h  # xmin, ymin, xmax, ymax (small image)
            elif i == 1:  # top right
                x1a, y1a, x2a, y2a = xc, max(yc - h, 0), min(xc + w, s * 2), yc
                x1b, y1b, x2b, y2b = 0, h - (y2a - y1a), min(w, x2a - x1a), h
            elif i == 2:  # bottom left
                x1a, y1a, x2a, y2a = max(xc - w, 0), yc, xc, min(s * 2, yc + h)
                x1b, y1b, x2b, y2b = w - (x2a - x1a), 0, w, min(y2a - y1a, h)
            elif i == 3:  # bottom right
                x1a, y1a, x2a, y2a = xc, yc, min(xc + w, s * 2), min(s * 2, yc + h)
                x1b, y1b, x2b, y2b = 0, 0, min(w, x2a - x1a), min(y2a - y1a, h)
            #小图上截取的部分贴到大图上
            img4[y1a:y2a, x1a:x2a] = img[y1b:y2b, x1b:x2b]  # img4[ymin:ymax, xmin:xmax]
            # 计算小图到大图后的偏移 用来确定目标框的位置
            padw = x1a - x1b
            padh = y1a - y1b

            # Labels
            labels, segments = self.labels[index].copy(), self.segments[index].copy()
            #标签裁剪
            if labels.size:
                labels[:, 1:] = xywhn2xyxy(labels[:, 1:], w, h, padw, padh)  # normalized xywh to pixel xyxy format
                segments = [xyn2xy(x, w, h, padw, padh) for x in segments]
            labels4.append(labels) #得到新的label的坐标
            segments4.extend(segments)

        # Concat/clip labels
        labels4 = np.concatenate(labels4, 0)
        for x in (labels4[:, 1:], *segments4):
            np.clip(x, 0, 2 * s, out=x)  # clip when using random_perspective()
        # img4, labels4 = replicate(img4, labels4)  # replicate

        # Augment
        # 将图片中没目标的 取别的图进行粘贴
        img4, labels4, segments4 = copy_paste(img4, labels4, segments4, p=self.hyp['copy_paste'])
        # 随机变换
        img4, labels4 = random_perspective(img4, labels4, segments4,
                                           degrees=self.hyp['degrees'],
                                           translate=self.hyp['translate'],
                                           scale=self.hyp['scale'],
                                           shear=self.hyp['shear'],
                                           perspective=self.hyp['perspective'],
                                           border=self.mosaic_border)  # border to remove

        return img4, labels4 #返回数据增强的后的图片和标签

 加载图片

 #加载图片并根据设定输入大小与图片源大小比例进行resize
    def load_image(self, i):
        # Loads 1 image from dataset index 'i', returns (im, original hw, resized hw)
        im, f, fn = self.ims[i], self.im_files[i], self.npy_files[i], #判断有没有这个图片
        if im is None:  # not cached in RAM
            if fn.exists():  # load npy
                im = np.load(fn)
            else:  # read image
                im = cv2.imread(f)  # BGR
                assert im is not None, f'Image Not Found {f}'
            h0, w0 = im.shape[:2]  # orig hw
            r = self.img_size / max(h0, w0)  # ratio
            #根据r选择不同的插值
            if r != 1:  # if sizes are not equal
                im = cv2.resize(im,
                                (int(w0 * r), int(h0 * r)),
                                interpolation=cv2.INTER_LINEAR if (self.augment or r > 1) else cv2.INTER_AREA)
            return im, (h0, w0), im.shape[:2]  # im, hw_original, hw_resized
        else:
            return self.ims[i], self.im_hw0[i], self.im_hw[i]  # im, hw_original, hw_resized

色彩变换

        #翻转色调
        #——————————————————————————————————————————————————————————————————————————————————————————————————
        if self.augment: 
            # Albumentations
            #进一步数据增强
            img,img2, labels = self.albumentations(img,img2, labels)
            nl = len(labels)  # update after albumentations

            # HSV color-space
            augment_hsv(img, hgain=hyp['hsv_h'], sgain=hyp['hsv_s'], vgain=hyp['hsv_v'])
            augment_hsv(img2, hgain=hyp['hsv_h'], sgain=hyp['hsv_s'], vgain=hyp['hsv_v'])
            # Flip up-down
            if random.random() < hyp['flipud']:
                img = np.flipud(img)
                img2 = np.flipud(img2)
                if nl:
                    labels[:, 2] = 1 - labels[:, 2]

            # Flip left-right
            if random.random() < hyp['fliplr']:
                img = np.fliplr(img) #沿轴 1(左/右)反转元素的顺序。
                img2 = np.fliplr(img2)
                if nl:
                    labels[:, 1] = 1 - labels[:, 1]

            # Cutouts
            # labels = cutout(img, labels, p=0.5)
            # nl = len(labels)  # update after cutout
        
        labels_out = torch.zeros((nl, 6))
        if nl:
            labels_out[:, 1:] = torch.from_numpy(labels)
        # Convert
        img = img.transpose((2, 0, 1))[::-1]  # HWC to CHW, BGR to RGB
        img = np.ascontiguousarray(img)
        img2 = img2.transpose((2, 0, 1))[::-1]  # HWC to CHW, BGR to RGB
        img2 = np.ascontiguousarray(img2)
        return torch.from_numpy(img),torch.from_numpy(img2), labels_out, self.im_files[index],self.im_files2[index], shapes,shapes2

随机透视变换

 随机变换的yaml文件在data/hyps/hyp.scratch-high.yaml

#图像缩放:保持图片宽高不变,剩下部分采用灰色填充
def letterbox(im, new_shape=(640, 640), color=(114, 114, 114), auto=True, scaleFill=False, scaleup=True, stride=32): #color是填充的颜色
    # Resize and pad image while meeting stride-multiple constraints
    shape = im.shape[:2]  # current shape [height, width]
    if isinstance(new_shape, int):
        new_shape = (new_shape, new_shape)
    
    # Scale ratio (new / old)
    r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
    #缩放到输入大小的时候,如果没有上采样,则只进行下采样,上采样会使图片模糊,影响性能
    if not scaleup:  # only scale down, do not scale up (for better val mAP)
        r = min(r, 1.0)

    # Compute padding 计算填充
    ratio = r, r  # width, height ratios
    new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
    dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1]  # wh padding
    if auto:  # minimum rectangle 获取最小的矩阵填充
        dw, dh = np.mod(dw, stride), np.mod(dh, stride)  # wh padding
    #如果scaleFill=True,则不进行填充,直接由resize改变
    elif scaleFill:  # stretch
        dw, dh = 0.0, 0.0
        new_unpad = (new_shape[1], new_shape[0])
        ratio = new_shape[1] / shape[1], new_shape[0] / shape[0]  # width, height ratios
    #计算上下填充大小
    dw /= 2  # divide padding into 2 sides
    dh /= 2

    if shape[::-1] != new_unpad:  # resize
        im = cv2.resize(im, new_unpad, interpolation=cv2.INTER_LINEAR)
    #什么位置进行填充
    top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
    left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
    #进行填充
    im = cv2.copyMakeBorder(im, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color)  # add border
    return im, ratio, (dw, dh)

#随机透视变换
def random_perspective(im, targets=(), segments=(), degrees=10, translate=.1, scale=.1, shear=10, perspective=0.0,
                       border=(0, 0)):
    # torchvision.transforms.RandomAffine(degrees=(-10, 10), translate=(0.1, 0.1), scale=(0.9, 1.1), shear=(-10, 10))
    # targets = [cls, xyxy]

    height = im.shape[0] + border[0] * 2  # shape(h,w,c)
    width = im.shape[1] + border[1] * 2

    # Center
    C = np.eye(3) #构造单位阵
    C[0, 2] = -im.shape[1] / 2  # x translation (pixels)
    C[1, 2] = -im.shape[0] / 2  # y translation (pixels)

    # Perspective 透视变换
    P = np.eye(3)
    P[2, 0] = random.uniform(-perspective, perspective)  # x perspective (about y)
    P[2, 1] = random.uniform(-perspective, perspective)  # y perspective (about x)

    # Rotation and Scale
    R = np.eye(3)
    a = random.uniform(-degrees, degrees)
    # a += random.choice([-180, -90, 0, 90])  # add 90deg rotations to small rotations
    s = random.uniform(1 - scale, 1 + scale)
    # s = 2 ** random.uniform(-scale, scale)
    R[:2] = cv2.getRotationMatrix2D(angle=a, center=(0, 0), scale=s)

    # Shear 裁剪的放射矩阵系数
    S = np.eye(3)
    S[0, 1] = math.tan(random.uniform(-shear, shear) * math.pi / 180)  # x shear (deg)
    S[1, 0] = math.tan(random.uniform(-shear, shear) * math.pi / 180)  # y shear (deg)

    # Translation 平移矩阵系数
    T = np.eye(3)
    T[0, 2] = random.uniform(0.5 - translate, 0.5 + translate) * width  # x translation (pixels)
    T[1, 2] = random.uniform(0.5 - translate, 0.5 + translate) * height  # y translation (pixels)

    # Combined rotation matrix
    #融合所有矩阵 得到最终变换的矩阵
    M = T @ S @ R @ P @ C  # order of operations (right to left) is IMPORTANT
    if (border[0] != 0) or (border[1] != 0) or (M != np.eye(3)).any():  # image changed
        if perspective: #透视变换,平行线不再平行
            im = cv2.warpPerspective(im, M, dsize=(width, height), borderValue=(114, 114, 114))
        else:  # affine #放射变换 平行线依旧平行
            im = cv2.warpAffine(im, M[:2], dsize=(width, height), borderValue=(114, 114, 114))

    # Visualize
    # import matplotlib.pyplot as plt
    # ax = plt.subplots(1, 2, figsize=(12, 6))[1].ravel()
    # ax[0].imshow(im[:, :, ::-1])  # base
    # ax[1].imshow(im2[:, :, ::-1])  # warped

    #调整标签信息
    # Transform label coordinates
    n = len(targets)
    if n:
        use_segments = any(x.any() for x in segments)
        new = np.zeros((n, 4))
        if use_segments:  # warp segments
            segments = resample_segments(segments)  # upsample
            for i, segment in enumerate(segments):
                xy = np.ones((len(segment), 3))
                xy[:, :2] = segment
                xy = xy @ M.T  # transform
                xy = xy[:, :2] / xy[:, 2:3] if perspective else xy[:, :2]  # perspective rescale or affine

                # clip
                new[i] = segment2box(xy, width, height)

        else:  # warp boxes
            xy = np.ones((n * 4, 3))
            xy[:, :2] = targets[:, [1, 2, 3, 4, 1, 4, 3, 2]].reshape(n * 4, 2)  # x1y1, x2y2, x1y2, x2y1
            xy = xy @ M.T  # transform
            xy = (xy[:, :2] / xy[:, 2:3] if perspective else xy[:, :2]).reshape(n, 8)  # perspective rescale or affine

            # create new boxes
            x = xy[:, [0, 2, 4, 6]]
            y = xy[:, [1, 3, 5, 7]]
            new = np.concatenate((x.min(1), y.min(1), x.max(1), y.max(1))).reshape(4, n).T

            # clip 剪裁过小的框
            new[:, [0, 2]] = new[:, [0, 2]].clip(0, width)
            new[:, [1, 3]] = new[:, [1, 3]].clip(0, height)

        # filter candidates 目标框过滤
        i = box_candidates(box1=targets[:, 1:5].T * s, box2=new.T, area_thr=0.01 if use_segments else 0.10) #最终得到i个目标框
        targets = targets[i]
        targets[:, 1:5] = new[i]

    return im, targets

#找到合适的目标框
def box_candidates(box1, box2, wh_thr=2, ar_thr=100, area_thr=0.1, eps=1e-16):  # box1(4,n), box2(4,n)
    # Compute candidate boxes: box1 before augment, box2 after augment, wh_thr (pixels), aspect_ratio_thr, area_ratio
    w1, h1 = box1[2] - box1[0], box1[3] - box1[1]
    w2, h2 = box2[2] - box2[0], box2[3] - box2[1]
    ar = np.maximum(w2 / (h2 + eps), h2 / (w2 + eps))  # aspect ratio
    return (w2 > wh_thr) & (h2 > wh_thr) & (w2 * h2 / (w1 * h1 + eps) > area_thr) & (ar < ar_thr)  # candidates 宽度高度大于2,面积要大于阈值
def cutout(im, labels, p=0.5):
    # Applies image cutout augmentation https://arxiv.org/abs/1708.04552
    if random.random() < p:
        h, w = im.shape[:2]
        scales = [0.5] * 1 + [0.25] * 2 + [0.125] * 4 + [0.0625] * 8 + [0.03125] * 16  # image size fraction
        for s in scales:
            mask_h = random.randint(1, int(h * s))  # create random masks
            mask_w = random.randint(1, int(w * s))
            
            # box  切掉的部分
            xmin = max(0, random.randint(0, w) - mask_w // 2)
            ymin = max(0, random.randint(0, h) - mask_h // 2)
            xmax = min(w, xmin + mask_w)
            ymax = min(h, ymin + mask_h)

            # apply random color mask 随机颜色填充
            im[ymin:ymax, xmin:xmax] = [random.randint(64, 191) for _ in range(3)]

            # return unobscured labels  更新目标框
            if len(labels) and s > 0.03:
                box = np.array([xmin, ymin, xmax, ymax], dtype=np.float32)
                ioa = bbox_ioa(box, labels[:, 1:5])  # intersection over area
                labels = labels[ioa < 0.60]  # remove >60% obscured labels

    return labels

2.4.3 utils/datasets.py

# Parameters
HELP_URL = 'https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data'
IMG_FORMATS = 'bmp', 'dng', 'jpeg', 'jpg', 'mpo', 'png', 'tif', 'tiff', 'webp'  # include image suffixes  #格式支持的图片
VID_FORMATS = 'asf', 'avi', 'gif', 'm4v', 'mkv', 'mov', 'mp4', 'mpeg', 'mpg', 'ts', 'wmv'  # include video suffixes #视频格式
BAR_FORMAT = '{l_bar}{bar:10}{r_bar}{bar:-10b}'  # tqdm bar format

# Get orientation exif tag
for orientation in ExifTags.TAGS.keys():
    if ExifTags.TAGS[orientation] == 'Orientation':
        break

#返回文件列表的hash值
def get_hash(paths):
    # Returns a single hash value of a list of paths (files or dirs)
    size = sum(os.path.getsize(p) for p in paths if os.path.exists(p))  # sizes
    h = hashlib.md5(str(size).encode())  # hash sizes
    h.update(''.join(paths).encode())  # hash paths
    return h.hexdigest()  # return hash

#获取图片宽高
def exif_size(img):
    # Returns exif-corrected PIL size
    s = img.size  # (width, height)
    try:
        rotation = dict(img._getexif().items())[orientation]#对图片进行旋转
        if rotation == 6:  # rotation 270
            s = (s[1], s[0])
        elif rotation == 8:  # rotation 90
            s = (s[1], s[0])
    except Exception:
        pass

    return s


def exif_transpose(image):
    """
    Transpose a PIL image accordingly if it has an EXIF Orientation tag.
    Inplace version of https://github.com/python-pillow/Pillow/blob/master/src/PIL/ImageOps.py exif_transpose()

    :param image: The image to transpose.
    :return: An image.
    """
    exif = image.getexif()
    orientation = exif.get(0x0112, 1)  # default 1
    if orientation > 1:
        method = {2: Image.FLIP_LEFT_RIGHT,
                  3: Image.ROTATE_180,
                  4: Image.FLIP_TOP_BOTTOM,
                  5: Image.TRANSPOSE,
                  6: Image.ROTATE_270,
                  7: Image.TRANSVERSE,
                  8: Image.ROTATE_90,
                  }.get(orientation)
        if method is not None:
            image = image.transpose(method)
            del exif[0x0112]
            image.info["exif"] = exif.tobytes()
    return image


def create_dataloader(path, imgsz, batch_size, stride, single_cls=False, hyp=None, augment=False, cache=False, pad=0.0,
                      rect=False, rank=-1, workers=8, image_weights=False, quad=False, prefix='', shuffle=False):
    if rect and shuffle:
        LOGGER.warning('WARNING: --rect is incompatible with DataLoader shuffle, setting shuffle=False')
        shuffle = False
    with torch_distributed_zero_first(rank):  # init dataset *.cache only once if DDP
        dataset = LoadImagesAndLabels(path, imgsz, batch_size,
                                      augment=augment,  # augmentation
                                      hyp=hyp,  # hyperparameters
                                      rect=rect,  # rectangular batches
                                      cache_images=cache,
                                      single_cls=single_cls,
                                      stride=int(stride),
                                      pad=pad,
                                      image_weights=image_weights,
                                      prefix=prefix)

    batch_size = min(batch_size, len(dataset))
    nd = torch.cuda.device_count()  # number of CUDA devices
    nw = min([os.cpu_count() // max(nd, 1), batch_size if batch_size > 1 else 0, workers])  # number of workers
    sampler = None if rank == -1 else distributed.DistributedSampler(dataset, shuffle=shuffle)
    loader = DataLoader if image_weights else InfiniteDataLoader  # only DataLoader allows for attribute updates
    return loader(dataset,
                  batch_size=batch_size,
                  shuffle=shuffle and sampler is None,
                  num_workers=nw,
                  sampler=sampler,
                  pin_memory=True,
                  collate_fn=LoadImagesAndLabels.collate_fn4 if quad else LoadImagesAndLabels.collate_fn), dataset


class InfiniteDataLoader(dataloader.DataLoader):
    """ Dataloader that reuses workers

    Uses same syntax as vanilla DataLoader
    """

    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)
        object.__setattr__(self, 'batch_sampler', _RepeatSampler(self.batch_sampler))
        self.iterator = super().__iter__()

    def __len__(self):
        return len(self.batch_sampler.sampler) #返回训练集图片个数

    def __iter__(self):
        for i in range(len(self)):
            yield next(self.iterator)


class _RepeatSampler:
    """ Sampler that repeats forever

    Args:
        sampler (Sampler)
    """

    def __init__(self, sampler):
        self.sampler = sampler

    def __iter__(self):
        while True:
            yield from iter(self.sampler)


class LoadImages:
    # YOLOv5 image/video dataloader, i.e. `python detect.py --source image.jpg/vid.mp4`
    def __init__(self, path, img_size=640, stride=32, auto=True):
        p = str(Path(path).resolve())  # os-agnostic absolute path
        if '*' in p:
            files = sorted(glob.glob(p, recursive=True))  # glob
        elif os.path.isdir(p):
            files = sorted(glob.glob(os.path.join(p, '*.*')))  # dir
        elif os.path.isfile(p): #如果是文件直接获取
            files = [p]  # files
        else:
            raise Exception(f'ERROR: {p} does not exist')
        #分别提取图片和视频的路径
        images = [x for x in files if x.split('.')[-1].lower() in IMG_FORMATS]
        videos = [x for x in files if x.split('.')[-1].lower() in VID_FORMATS]
        ni, nv = len(images), len(videos) #获取数量

        self.img_size = img_size
        self.stride = stride
        self.files = images + videos #整个图片视频放一个列表
        self.nf = ni + nv  # number of files
        self.video_flag = [False] * ni + [True] * nv#判断是否为视频,方便后续单独处理
        self.mode = 'image'
        self.auto = auto
        if any(videos): #是否包含视频文件
            self.new_video(videos[0])  # new video
        else:
            self.cap = None
        assert self.nf > 0, f'No images or videos found in {p}. ' \
                            f'Supported formats are:\nimages: {IMG_FORMATS}\nvideos: {VID_FORMATS}'

    def __iter__(self): #创建迭代器对象
        self.count = 0
        return self

    def __next__(self): #输出下一项
        if self.count == self.nf:
            raise StopIteration
        path = self.files[self.count]

        if self.video_flag[self.count]: #如果为视频
            # Read video
            self.mode = 'video'
            ret_val, img0 = self.cap.read()
            while not ret_val:
                self.count += 1
                self.cap.release()
                if self.count == self.nf:  # last video
                    raise StopIteration
                else:
                    path = self.files[self.count]
                    self.new_video(path)
                    ret_val, img0 = self.cap.read()

            self.frame += 1
            s = f'video {self.count + 1}/{self.nf} ({self.frame}/{self.frames}) {path}: '

        else:
            # Read image
            self.count += 1
            img0 = cv2.imread(path)  # BGR格式
            assert img0 is not None, f'Image Not Found {path}'
            s = f'image {self.count}/{self.nf} {path}: '

        # Padded resize
        img = letterbox(img0, self.img_size, stride=self.stride, auto=self.auto)[0] #对图片缩放填充

        # Convert
        img = img.transpose((2, 0, 1))[::-1]  # HWC to CHW, BGR to RGB #BGR到RGB的转换
        img = np.ascontiguousarray(img) #将数组转换为连续,提高速度

        return path, img, img0, self.cap, s

    def new_video(self, path):
        self.frame = 0 #frme记录帧数
        self.cap = cv2.VideoCapture(path) #初始化视频对象
        self.frames = int(self.cap.get(cv2.CAP_PROP_FRAME_COUNT)) #总帧数

    def __len__(self):
        return self.nf  # number of files


class LoadWebcam:  # for inference
    # YOLOv5 local webcam dataloader, i.e. `python detect.py --source 0`
    def __init__(self, pipe='0', img_size=640, stride=32):
        self.img_size = img_size
        self.stride = stride
        self.pipe = eval(pipe) if pipe.isnumeric() else pipe
        self.cap = cv2.VideoCapture(self.pipe)  # video capture object
        self.cap.set(cv2.CAP_PROP_BUFFERSIZE, 3)  # set buffer size

    def __iter__(self):
        self.count = -1
        return self

    def __next__(self):
        self.count += 1
        if cv2.waitKey(1) == ord('q'):  # q to quit
            self.cap.release()
            cv2.destroyAllWindows()
            raise StopIteration

        # Read frame
        ret_val, img0 = self.cap.read()
        img0 = cv2.flip(img0, 1)  # flip left-right

        # Print
        assert ret_val, f'Camera Error {self.pipe}'
        img_path = 'webcam.jpg'
        s = f'webcam {self.count}: '

        # Padded resize
        img = letterbox(img0, self.img_size, stride=self.stride)[0]

        # Convert
        img = img.transpose((2, 0, 1))[::-1]  # HWC to CHW, BGR to RGB
        img = np.ascontiguousarray(img)

        return img_path, img, img0, None, s

    def __len__(self):
        return 0

#迭代器
class LoadStreams:
    # YOLOv5 streamloader, i.e. `python detect.py --source 'rtsp://example.com/media.mp4'  # RTSP, RTMP, HTTP streams`
    def __init__(self, sources='streams.txt', img_size=640, stride=32, auto=True): #sources为一个保存多视频的文件
        self.mode = 'stream'
        self.img_size = img_size
        self.stride = stride

        if os.path.isfile(sources):
            with open(sources) as f:
                sources = [x.strip() for x in f.read().strip().splitlines() if len(x.strip())]
        else:
            sources = [sources]

        n = len(sources)
        self.imgs, self.fps, self.frames, self.threads = [None] * n, [0] * n, [0] * n, [None] * n
        self.sources = [clean_str(x) for x in sources]  # clean source names for later
        self.auto = auto
        #打印当前视频,视频总数,视频流地址
        for i, s in enumerate(sources):  # index, source
            # Start thread to read frames from video stream
            st = f'{i + 1}/{n}: {s}... '
            if 'youtube.com/' in s or 'youtu.be/' in s:  # if source is YouTube video
                check_requirements(('pafy', 'youtube_dl==2020.12.2'))
                import pafy
                s = pafy.new(s).getbest(preftype="mp4").url  # YouTube URL
            s = eval(s) if s.isnumeric() else s  # i.e. s = '0' local webcam
            cap = cv2.VideoCapture(s)
            assert cap.isOpened(), f'{st}Failed to open {s}'
            #获取视频宽高
            w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
            h = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
            fps = cap.get(cv2.CAP_PROP_FPS)  # warning: may return 0 or nan
            self.frames[i] = max(int(cap.get(cv2.CAP_PROP_FRAME_COUNT)), 0) or float('inf')  # infinite stream fallback
            self.fps[i] = max((fps if math.isfinite(fps) else 0) % 100, 0) or 30  # 30 FPS fallback

            _, self.imgs[i] = cap.read()  # guarantee first frame
            #创建多线程读取
            self.threads[i] = Thread(target=self.update, args=([i, cap, s]), daemon=True)
            LOGGER.info(f"{st} Success ({self.frames[i]} frames {w}x{h} at {self.fps[i]:.2f} FPS)")
            self.threads[i].start()
        LOGGER.info('')  # newline

        # check for common shapes
        #按照矩形推理形状进行填充
        s = np.stack([letterbox(x, self.img_size, stride=self.stride, auto=self.auto)[0].shape for x in self.imgs])
        self.rect = np.unique(s, axis=0).shape[0] == 1  # rect inference if all shapes equal
        if not self.rect:
            LOGGER.warning('WARNING: Stream shapes differ. For optimal performance supply similarly-shaped streams.')

    def update(self, i, cap, stream):
        # Read stream `i` frames in daemon thread
        n, f, read = 0, self.frames[i], 1  # frame number, frame array, inference every 'read' frame
        while cap.isOpened() and n < f:
            n += 1
            # _, self.imgs[index] = cap.read()
            cap.grab()
            if n % read == 0:
                success, im = cap.retrieve()
                if success:
                    self.imgs[i] = im
                else:
                    LOGGER.warning('WARNING: Video stream unresponsive, please check your IP camera connection.')
                    self.imgs[i] = np.zeros_like(self.imgs[i])
                    cap.open(stream)  # re-open stream if signal was lost
            time.sleep(1 / self.fps[i])  # wait time

    def __iter__(self):
        self.count = -1
        return self

    def __next__(self):
        self.count += 1
        if not all(x.is_alive() for x in self.threads) or cv2.waitKey(1) == ord('q'):  # q to quit
            cv2.destroyAllWindows()
            raise StopIteration

        # Letterbox
        img0 = self.imgs.copy()
        img = [letterbox(x, self.img_size, stride=self.stride, auto=self.rect and self.auto)[0] for x in img0]

        # Stack
        img = np.stack(img, 0)

        # Convert
        img = img[..., ::-1].transpose((0, 3, 1, 2))  # BGR to RGB, BHWC to BCHW
        img = np.ascontiguousarray(img)

        return self.sources, img, img0, None, ''

    def __len__(self):
        return len(self.sources)  # 1E12 frames = 32 streams at 30 FPS for 30 years

#根据图片找到标签路径
def img2label_paths(img_paths):
    # Define label paths as a function of image paths
    sa, sb = os.sep + 'images' + os.sep, os.sep + 'labels' + os.sep  # /images/, /labels/ substrings
    return [sb.join(x.rsplit(sa, 1)).rsplit('.', 1)[0] + '.txt' for x in img_paths]

#一、数据处理
class LoadImagesAndLabels(Dataset):
    # YOLOv5 train_loader/val_loader, loads images and labels for training and validation
    cache_version = 0.6  # dataset labels *.cache version

    def __init__(self, path, img_size=640, batch_size=16, augment=False, hyp=None, rect=False, image_weights=False,
                 cache_images=False, single_cls=False, stride=32, pad=0.0, prefix=''):
        #创建参数
        self.img_size = img_size
        self.augment = augment #是否数据增强
        self.hyp = hyp #超参数
        self.image_weights = image_weights #图片采样权重
        self.rect = False if image_weights else rect #矩阵训练
        #mosaic数据增强
        self.mosaic = self.augment and not self.rect  # load 4 images at a time into a mosaic (only during training)
        self.mosaic_border = [-img_size // 2, -img_size // 2]
        self.stride = stride #下采样步数
        self.path = path
        self.albumentations = Albumentations() if augment else None

        try:
            #1、获取图片
            f = []  # image files
            for p in path if isinstance(path, list) else [path]:
                p = Path(p)  # os-agnostic
                if p.is_dir():  # dir
                    f += glob.glob(str(p / '**' / '*.*'), recursive=True)
                    # f = list(p.rglob('*.*'))  # pathlib
                elif p.is_file():  # file
                    with open(p) as t:
                        t = t.read().strip().splitlines()
                        parent = str(p.parent) + os.sep #上级目录os.sep是分隔符
                        f += [x.replace('./', parent) if x.startswith('./') else x for x in t]  # local to global path
                        # f += [p.parent / x.lstrip(os.sep) for x in t]  # local to global path (pathlib)
                else:
                    raise Exception(f'{prefix}{p} does not exist')
            # 2、过滤不支持格式的图片
            self.im_files = sorted(x.replace('/', os.sep) for x in f if x.split('.')[-1].lower() in IMG_FORMATS)
            # self.img_files = sorted([x for x in f if x.suffix[1:].lower() in IMG_FORMATS])  # pathlib
            assert self.im_files, f'{prefix}No images found'
        except Exception as e:
            raise Exception(f'{prefix}Error loading data from {path}: {e}\nSee {HELP_URL}')

        # Check cache
        self.label_files = img2label_paths(self.im_files)  # 获取labels
        cache_path = (p if p.is_file() else Path(self.label_files[0]).parent).with_suffix('.cache')
        try:
            cache, exists = np.load(cache_path, allow_pickle=True).item(), True  # load dict
            assert cache['version'] == self.cache_version  # same version
            assert cache['hash'] == get_hash(self.label_files + self.im_files)  # same hash 判断hash值是否改变
        except Exception:
            cache, exists = self.cache_labels(cache_path, prefix), False  # cache

        # Display cache  过滤结果打印
        nf, nm, ne, nc, n = cache.pop('results')  # found, missing, empty, corrupt, total
        if exists:
            d = f"Scanning '{cache_path}' images and labels... {nf} found, {nm} missing, {ne} empty, {nc} corrupt"
            tqdm(None, desc=prefix + d, total=n, initial=n, bar_format=BAR_FORMAT)  # display cache results
            if cache['msgs']:
                LOGGER.info('\n'.join(cache['msgs']))  # display warnings
        assert nf > 0 or not augment, f'{prefix}No labels in {cache_path}. Can not train without labels. See {HELP_URL}'

        # Read cache
        [cache.pop(k) for k in ('hash', 'version', 'msgs')]  # remove items
        labels, shapes, self.segments = zip(*cache.values())
        self.labels = list(labels)
        self.shapes = np.array(shapes, dtype=np.float64)
        self.im_files = list(cache.keys())  # update 图片列表
        self.label_files = img2label_paths(cache.keys())  # update 标签列表
        n = len(shapes)  # number of images
        bi = np.floor(np.arange(n) / batch_size).astype(np.int)  # batch index 将每一张图片batch索引
        nb = bi[-1] + 1  # number of batches
        self.batch = bi  # batch index of image
        self.n = n
        self.indices = range(n)

        # Update labels
        #过滤类别
        include_class = []  # filter labels to include only these classes (optional)
        include_class_array = np.array(include_class).reshape(1, -1)
        for i, (label, segment) in enumerate(zip(self.labels, self.segments)):
            if include_class:
                j = (label[:, 0:1] == include_class_array).any(1)
                self.labels[i] = label[j]
                if segment:
                    self.segments[i] = segment[j]
            if single_cls:  # single-class training, merge all classes into 0 把所有目标归为一类
                self.labels[i][:, 0] = 0
                if segment:
                    self.segments[i][:, 0] = 0

        # Rectangular Training
        #是否采用矩形构造
        if self.rect:
            # Sort by aspect ratio
            s = self.shapes  # wh
            ar = s[:, 1] / s[:, 0]  # aspect ratio #高和宽的比
            irect = ar.argsort() #根据ar排序
            self.im_files = [self.im_files[i] for i in irect]
            self.label_files = [self.label_files[i] for i in irect]
            self.labels = [self.labels[i] for i in irect]
            self.shapes = s[irect]  # wh
            ar = ar[irect]

            # Set training image shapes 设置训练图片的shapes
            # 对同个batch进行尺寸处理
            shapes = [[1, 1]] * nb
            for i in range(nb):
                ari = ar[bi == i]
                mini, maxi = ari.min(), ari.max()
                if maxi < 1:
                    shapes[i] = [maxi, 1]
                elif mini > 1:
                    shapes[i] = [1, 1 / mini]

            self.batch_shapes = np.ceil(np.array(shapes) * img_size / stride + pad).astype(np.int) * stride

        # Cache images into RAM/disk for faster training (WARNING: large datasets may exceed system resources)
        self.ims = [None] * n
        self.npy_files = [Path(f).with_suffix('.npy') for f in self.im_files]
        if cache_images:
            gb = 0  # Gigabytes of cached images
            self.im_hw0, self.im_hw = [None] * n, [None] * n
            fcn = self.cache_images_to_disk if cache_images == 'disk' else self.load_image
            results = ThreadPool(NUM_THREADS).imap(fcn, range(n))
            pbar = tqdm(enumerate(results), total=n, bar_format=BAR_FORMAT)
            for i, x in pbar:
                if cache_images == 'disk':
                    gb += self.npy_files[i].stat().st_size
                else:  # 'ram'
                    self.ims[i], self.im_hw0[i], self.im_hw[i] = x  # im, hw_orig, hw_resized = load_image(self, i)
                    gb += self.ims[i].nbytes
                pbar.desc = f'{prefix}Caching images ({gb / 1E9:.1f}GB {cache_images})'
            pbar.close()
    #标签过滤
    def cache_labels(self, path=Path('./labels.cache'), prefix=''):
        # Cache dataset labels, check images and read shapes
        x = {}  # dict
        nm, nf, ne, nc, msgs = 0, 0, 0, 0, []  # number missing, found, empty, corrupt, messages
        desc = f"{prefix}Scanning '{path.parent / path.stem}' images and labels..."
        with Pool(NUM_THREADS) as pool:
            pbar = tqdm(pool.imap(verify_image_label, zip(self.im_files, self.label_files, repeat(prefix))),
                        desc=desc, total=len(self.im_files), bar_format=BAR_FORMAT)
            for im_file, lb, shape, segments, nm_f, nf_f, ne_f, nc_f, msg in pbar:
                nm += nm_f
                nf += nf_f
                ne += ne_f
                nc += nc_f
                if im_file:
                    x[im_file] = [lb, shape, segments]# 保存为字典
                if msg:
                    msgs.append(msg)
                pbar.desc = f"{desc}{nf} found, {nm} missing, {ne} empty, {nc} corrupt"

        pbar.close()
        if msgs:
            LOGGER.info('\n'.join(msgs))
        if nf == 0:
            LOGGER.warning(f'{prefix}WARNING: No labels found in {path}. See {HELP_URL}')
        x['hash'] = get_hash(self.label_files + self.im_files)
        x['results'] = nf, nm, ne, nc, len(self.im_files)
        x['msgs'] = msgs  # warnings
        x['version'] = self.cache_version  # cache version
        try:
            np.save(path, x)  # save cache for next time 保存本地方便下次使用
            path.with_suffix('.cache.npy').rename(path)  # remove .npy suffix
            LOGGER.info(f'{prefix}New cache created: {path}')
        except Exception as e:
            LOGGER.warning(f'{prefix}WARNING: Cache directory {path.parent} is not writeable: {e}')  # not writeable
        return x

    def __len__(self):
        return len(self.im_files)

    # def __iter__(self):
    #     self.count = -1
    #     print('ran dataset iter')
    #     #self.shuffled_vector = np.random.permutation(self.nF) if self.augment else np.arange(self.nF)
    #     return self
    #二、图片增强
    def __getitem__(self, index):#根据每个类别数量获得图片采样权重,获取新的下标
        index = self.indices[index]  # linear, shuffled, or image_weights

        hyp = self.hyp
        mosaic = self.mosaic and random.random() < hyp['mosaic']
        if mosaic:
            # Load mosaic
            img, labels = self.load_mosaic(index) #mosaic数据增强的方式加载图片标签
            shapes = None
            #是否做Mixup数据增强
            # MixUp augmentation
            if random.random() < hyp['mixup']:
                img, labels = mixup(img, labels, *self.load_mosaic(random.randint(0, self.n - 1)))

        else:
            # Load image resize图片
            img, (h0, w0), (h, w) = self.load_image(index)

            # Letterbox
            shape = self.batch_shapes[self.batch[index]] if self.rect else self.img_size  # final letterboxed shape
            img, ratio, pad = letterbox(img, shape, auto=False, scaleup=self.augment)
            shapes = (h0, w0), ((h / h0, w / w0), pad)  # for COCO mAP rescaling

            labels = self.labels[index].copy()
            if labels.size:  # normalized xywh to pixel xyxy format
                labels[:, 1:] = xywhn2xyxy(labels[:, 1:], ratio[0] * w, ratio[1] * h, padw=pad[0], padh=pad[1])

            if self.augment:
                img, labels = random_perspective(img, labels,
                                                 degrees=hyp['degrees'],
                                                 translate=hyp['translate'],
                                                 scale=hyp['scale'],
                                                 shear=hyp['shear'],
                                                 perspective=hyp['perspective'])

        nl = len(labels)  # number of labels
        if nl:
            labels[:, 1:5] = xyxy2xywhn(labels[:, 1:5], w=img.shape[1], h=img.shape[0], clip=True, eps=1E-3)

        if self.augment:
            # Albumentations
            #进一步数据增强
            img, labels = self.albumentations(img, labels)
            nl = len(labels)  # update after albumentations

            # HSV color-space
            augment_hsv(img, hgain=hyp['hsv_h'], sgain=hyp['hsv_s'], vgain=hyp['hsv_v'])

            # Flip up-down
            if random.random() < hyp['flipud']:
                img = np.flipud(img)
                if nl:
                    labels[:, 2] = 1 - labels[:, 2]

            # Flip left-right
            if random.random() < hyp['fliplr']:
                img = np.fliplr(img)
                if nl:
                    labels[:, 1] = 1 - labels[:, 1]

            # Cutouts
            # labels = cutout(img, labels, p=0.5)
            # nl = len(labels)  # update after cutout

        labels_out = torch.zeros((nl, 6))
        if nl:
            labels_out[:, 1:] = torch.from_numpy(labels)

        # Convert
        img = img.transpose((2, 0, 1))[::-1]  # HWC to CHW, BGR to RGB
        img = np.ascontiguousarray(img)

        return torch.from_numpy(img), labels_out, self.im_files[index], shapes

    #加载图片并根据设定输入大小与图片源大小比例进行resize
    def load_image(self, i):
        # Loads 1 image from dataset index 'i', returns (im, original hw, resized hw)
        im, f, fn = self.ims[i], self.im_files[i], self.npy_files[i], #判断有没有这个图片
        if im is None:  # not cached in RAM
            if fn.exists():  # load npy
                im = np.load(fn)
            else:  # read image
                im = cv2.imread(f)  # BGR
                assert im is not None, f'Image Not Found {f}'
            h0, w0 = im.shape[:2]  # orig hw
            r = self.img_size / max(h0, w0)  # ratio
            #根据r选择不同的插值
            if r != 1:  # if sizes are not equal
                im = cv2.resize(im,
                                (int(w0 * r), int(h0 * r)),
                                interpolation=cv2.INTER_LINEAR if (self.augment or r > 1) else cv2.INTER_AREA)
            return im, (h0, w0), im.shape[:2]  # im, hw_original, hw_resized
        else:
            return self.ims[i], self.im_hw0[i], self.im_hw[i]  # im, hw_original, hw_resized

    def cache_images_to_disk(self, i):
        # Saves an image as an *.npy file for faster loading
        f = self.npy_files[i]
        if not f.exists():
            np.save(f.as_posix(), cv2.imread(self.im_files[i]))

    def load_mosaic(self, index): #self自定义数据集 index要增强的索引
        # YOLOv5 4-mosaic loader. Loads 1 image + 3 random images into a 4-image mosaic
        labels4, segments4 = [], []
        s = self.img_size
        #随机选取一个中心点
        yc, xc = (int(random.uniform(-x, 2 * s + x)) for x in self.mosaic_border)  # mosaic center x, y
        indices = [index] + random.choices(self.indices, k=3)  # 3 additional image indices
        #随机取其他三张图片索引
        random.shuffle(indices)
        for i, index in enumerate(indices):
            # Load image
            img, _, (h, w) = self.load_image(index)#load_image 加载图片根据设定的输入大小与图片原大小的比例进行resize

            # place img in img4
            if i == 0:  # top left
                #初始化大图
                img4 = np.full((s * 2, s * 2, img.shape[2]), 114, dtype=np.uint8)  # base image with 4 tiles
                #把原图放到左上角
                x1a, y1a, x2a, y2a = max(xc - w, 0), max(yc - h, 0), xc, yc  # xmin, ymin, xmax, ymax (large image)
                #选取小图上的位置 如果图片越界会裁剪
                x1b, y1b, x2b, y2b = w - (x2a - x1a), h - (y2a - y1a), w, h  # xmin, ymin, xmax, ymax (small image)
            elif i == 1:  # top right
                x1a, y1a, x2a, y2a = xc, max(yc - h, 0), min(xc + w, s * 2), yc
                x1b, y1b, x2b, y2b = 0, h - (y2a - y1a), min(w, x2a - x1a), h
            elif i == 2:  # bottom left
                x1a, y1a, x2a, y2a = max(xc - w, 0), yc, xc, min(s * 2, yc + h)
                x1b, y1b, x2b, y2b = w - (x2a - x1a), 0, w, min(y2a - y1a, h)
            elif i == 3:  # bottom right
                x1a, y1a, x2a, y2a = xc, yc, min(xc + w, s * 2), min(s * 2, yc + h)
                x1b, y1b, x2b, y2b = 0, 0, min(w, x2a - x1a), min(y2a - y1a, h)
            #小图上截取的部分贴到大图上
            img4[y1a:y2a, x1a:x2a] = img[y1b:y2b, x1b:x2b]  # img4[ymin:ymax, xmin:xmax]
            # 计算小图到大图后的偏移 用来确定目标框的位置
            padw = x1a - x1b
            padh = y1a - y1b

            # Labels
            labels, segments = self.labels[index].copy(), self.segments[index].copy()
            #标签裁剪
            if labels.size:
                labels[:, 1:] = xywhn2xyxy(labels[:, 1:], w, h, padw, padh)  # normalized xywh to pixel xyxy format
                segments = [xyn2xy(x, w, h, padw, padh) for x in segments]
            labels4.append(labels) #得到新的label的坐标
            segments4.extend(segments)

        # Concat/clip labels
        labels4 = np.concatenate(labels4, 0)
        for x in (labels4[:, 1:], *segments4):
            np.clip(x, 0, 2 * s, out=x)  # clip when using random_perspective()
        # img4, labels4 = replicate(img4, labels4)  # replicate

        # Augment
        # 将图片中没目标的 取别的图进行粘贴
        img4, labels4, segments4 = copy_paste(img4, labels4, segments4, p=self.hyp['copy_paste'])
        # 随机变换
        img4, labels4 = random_perspective(img4, labels4, segments4,
                                           degrees=self.hyp['degrees'],
                                           translate=self.hyp['translate'],
                                           scale=self.hyp['scale'],
                                           shear=self.hyp['shear'],
                                          perspective=self.hyp['perspective'],
                                           border=self.mosaic_border)  # border to remove

        return img4, labels4 #返回数据增强的后的图片和标签

    def load_mosaic9(self, index):
        # YOLOv5 9-mosaic loader. Loads 1 image + 8 random images into a 9-image mosaic
        labels9, segments9 = [], []
        s = self.img_size
        indices = [index] + random.choices(self.indices, k=8)  # 8 additional image indices
        random.shuffle(indices)
        hp, wp = -1, -1  # height, width previous
        for i, index in enumerate(indices):
            # Load image
            img, _, (h, w) = self.load_image(index)

            # place img in img9
            if i == 0:  # center
                img9 = np.full((s * 3, s * 3, img.shape[2]), 114, dtype=np.uint8)  # base image with 4 tiles
                h0, w0 = h, w
                c = s, s, s + w, s + h  # xmin, ymin, xmax, ymax (base) coordinates
            elif i == 1:  # top
                c = s, s - h, s + w, s
            elif i == 2:  # top right
                c = s + wp, s - h, s + wp + w, s
            elif i == 3:  # right
                c = s + w0, s, s + w0 + w, s + h
            elif i == 4:  # bottom right
                c = s + w0, s + hp, s + w0 + w, s + hp + h
            elif i == 5:  # bottom
                c = s + w0 - w, s + h0, s + w0, s + h0 + h
            elif i == 6:  # bottom left
                c = s + w0 - wp - w, s + h0, s + w0 - wp, s + h0 + h
            elif i == 7:  # left
                c = s - w, s + h0 - h, s, s + h0
            elif i == 8:  # top left
                c = s - w, s + h0 - hp - h, s, s + h0 - hp

            padx, pady = c[:2]
            x1, y1, x2, y2 = (max(x, 0) for x in c)  # allocate coords

            # Labels
            labels, segments = self.labels[index].copy(), self.segments[index].copy()
            if labels.size:
                labels[:, 1:] = xywhn2xyxy(labels[:, 1:], w, h, padx, pady)  # normalized xywh to pixel xyxy format
                segments = [xyn2xy(x, w, h, padx, pady) for x in segments]
            labels9.append(labels)
            segments9.extend(segments)

            # Image
            img9[y1:y2, x1:x2] = img[y1 - pady:, x1 - padx:]  # img9[ymin:ymax, xmin:xmax]
            hp, wp = h, w  # height, width previous

        # Offset
        yc, xc = (int(random.uniform(0, s)) for _ in self.mosaic_border)  # mosaic center x, y
        img9 = img9[yc:yc + 2 * s, xc:xc + 2 * s]

        # Concat/clip labels
        labels9 = np.concatenate(labels9, 0)
        labels9[:, [1, 3]] -= xc
        labels9[:, [2, 4]] -= yc
        c = np.array([xc, yc])  # centers
        segments9 = [x - c for x in segments9]

        for x in (labels9[:, 1:], *segments9):
            np.clip(x, 0, 2 * s, out=x)  # clip when using random_perspective()
        # img9, labels9 = replicate(img9, labels9)  # replicate

        # Augment
        img9, labels9 = random_perspective(img9, labels9, segments9,
                                           degrees=self.hyp['degrees'],
                                           translate=self.hyp['translate'],
                                           scale=self.hyp['scale'],
                                           shear=self.hyp['shear'],
                                           perspective=self.hyp['perspective'],
                                           border=self.mosaic_border)  # border to remove

        return img9, labels9

    @staticmethod
    def collate_fn(batch): #如何取样本
        im, label, path, shapes = zip(*batch)  # transposed
        for i, lb in enumerate(label):
            lb[:, 0] = i  # add target image index for build_targets()
        return torch.stack(im, 0), torch.cat(label, 0), path, shapes

    @staticmethod
    def collate_fn4(batch):
        img, label, path, shapes = zip(*batch)  # transposed
        n = len(shapes) // 4
        im4, label4, path4, shapes4 = [], [], path[:n], shapes[:n]

        ho = torch.tensor([[0.0, 0, 0, 1, 0, 0]])
        wo = torch.tensor([[0.0, 0, 1, 0, 0, 0]])
        s = torch.tensor([[1, 1, 0.5, 0.5, 0.5, 0.5]])  # scale
        for i in range(n):  # zidane torch.zeros(16,3,720,1280)  # BCHW
            i *= 4
            if random.random() < 0.5:
                im = F.interpolate(img[i].unsqueeze(0).float(), scale_factor=2.0, mode='bilinear', align_corners=False)[
                    0].type(img[i].type())
                lb = label[i]
            else:
                im = torch.cat((torch.cat((img[i], img[i + 1]), 1), torch.cat((img[i + 2], img[i + 3]), 1)), 2)
                lb = torch.cat((label[i], label[i + 1] + ho, label[i + 2] + wo, label[i + 3] + ho + wo), 0) * s
            im4.append(im)
            label4.append(lb)

        for i, lb in enumerate(label4):
            lb[:, 0] = i  # add target image index for build_targets()

        return torch.stack(im4, 0), torch.cat(label4, 0), path4, shapes4


# Ancillary functions --------------------------------------------------------------------------------------------------
def create_folder(path='./new'):
    # Create folder
    if os.path.exists(path):
        shutil.rmtree(path)  # delete output folder
    os.makedirs(path)  # make new output folder


def flatten_recursive(path=DATASETS_DIR / 'coco128'):
    # Flatten a recursive directory by bringing all files to top level
    new_path = Path(str(path) + '_flat')
    create_folder(new_path)
    for file in tqdm(glob.glob(str(Path(path)) + '/**/*.*', recursive=True)):
        shutil.copyfile(file, new_path / Path(file).name)


def extract_boxes(path=DATASETS_DIR / 'coco128'):  # from utils.datasets import *; extract_boxes()
    # Convert detection dataset into classification dataset, with one directory per class
    path = Path(path)  # images dir
    shutil.rmtree(path / 'classifier') if (path / 'classifier').is_dir() else None  # remove existing
    files = list(path.rglob('*.*'))
    n = len(files)  # number of files
    for im_file in tqdm(files, total=n):
        if im_file.suffix[1:] in IMG_FORMATS:
            # image
            im = cv2.imread(str(im_file))[..., ::-1]  # BGR to RGB
            h, w = im.shape[:2]

            # labels
            lb_file = Path(img2label_paths([str(im_file)])[0])
            if Path(lb_file).exists():
                with open(lb_file) as f:
                    lb = np.array([x.split() for x in f.read().strip().splitlines()], dtype=np.float32)  # labels

                for j, x in enumerate(lb):
                    c = int(x[0])  # class
                    f = (path / 'classifier') / f'{c}' / f'{path.stem}_{im_file.stem}_{j}.jpg'  # new filename
                    if not f.parent.is_dir():
                        f.parent.mkdir(parents=True)

                    b = x[1:] * [w, h, w, h]  # box
                    # b[2:] = b[2:].max()  # rectangle to square
                    b[2:] = b[2:] * 1.2 + 3  # pad
                    b = xywh2xyxy(b.reshape(-1, 4)).ravel().astype(np.int)

                    b[[0, 2]] = np.clip(b[[0, 2]], 0, w)  # clip boxes outside of image
                    b[[1, 3]] = np.clip(b[[1, 3]], 0, h)
                    assert cv2.imwrite(str(f), im[b[1]:b[3], b[0]:b[2]]), f'box failure in {f}'


def autosplit(path=DATASETS_DIR / 'coco128/images', weights=(0.9, 0.1, 0.0), annotated_only=False):
    """ Autosplit a dataset into train/val/test splits and save path/autosplit_*.txt files
    Usage: from utils.datasets import *; autosplit()
    Arguments
        path:            Path to images directory
        weights:         Train, val, test weights (list, tuple)
        annotated_only:  Only use images with an annotated txt file
    """
    path = Path(path)  # images dir
    files = sorted(x for x in path.rglob('*.*') if x.suffix[1:].lower() in IMG_FORMATS)  # image files only
    n = len(files)  # number of files
    random.seed(0)  # for reproducibility
    indices = random.choices([0, 1, 2], weights=weights, k=n)  # assign each image to a split

    txt = ['autosplit_train.txt', 'autosplit_val.txt', 'autosplit_test.txt']  # 3 txt files
    [(path.parent / x).unlink(missing_ok=True) for x in txt]  # remove existing

    print(f'Autosplitting images from {path}' + ', using *.txt labeled images only' * annotated_only)
    for i, img in tqdm(zip(indices, files), total=n):
        if not annotated_only or Path(img2label_paths([str(img)])[0]).exists():  # check label
            with open(path.parent / txt[i], 'a') as f:
                f.write('./' + img.relative_to(path.parent).as_posix() + '\n')  # add image to txt file

#标签过滤
def verify_image_label(args):
    # Verify one image-label pair
    im_file, lb_file, prefix = args
    nm, nf, ne, nc, msg, segments = 0, 0, 0, 0, '', []  # number (missing, found, empty, corrupt), message, segments
    try:
        # verify images
        im = Image.open(im_file)
        im.verify()  # PIL verify
        shape = exif_size(im)  # image size
        assert (shape[0] > 9) & (shape[1] > 9), f'image size {shape} <10 pixels'
        assert im.format.lower() in IMG_FORMATS, f'invalid image format {im.format}'
        if im.format.lower() in ('jpg', 'jpeg'):
            with open(im_file, 'rb') as f:
                f.seek(-2, 2)
                if f.read() != b'\xff\xd9':  # corrupt JPEG
                    #图片角度旋转矫正
                    ImageOps.exif_transpose(Image.open(im_file)).save(im_file, 'JPEG', subsampling=0, quality=100)
                    msg = f'{prefix}WARNING: {im_file}: corrupt JPEG restored and saved'

        # verify labels
        #标签过滤
        if os.path.isfile(lb_file):
            nf = 1  # label found
            with open(lb_file) as f:
                lb = [x.split() for x in f.read().strip().splitlines() if len(x)]
                if any(len(x) > 6 for x in lb):  # is segment 轮廓点
                    classes = np.array([x[0] for x in lb], dtype=np.float32) #第一个数是类别
                    segments = [np.array(x[1:], dtype=np.float32).reshape(-1, 2) for x in lb]  # (cls, xy1...)
                    lb = np.concatenate((classes.reshape(-1, 1), segments2boxes(segments)), 1)  # (cls, xywh)
                lb = np.array(lb, dtype=np.float32) #保存边框数据
            nl = len(lb)
            if nl:
                assert lb.shape[1] == 5, f'labels require 5 columns, {lb.shape[1]} columns detected'
                assert (lb >= 0).all(), f'negative label values {lb[lb < 0]}'
                #归一化
                assert (lb[:, 1:] <= 1).all(), f'non-normalized or out of bounds coordinates {lb[:, 1:][lb[:, 1:] > 1]}'
                _, i = np.unique(lb, axis=0, return_index=True)
                if len(i) < nl:  # duplicate row check
                    lb = lb[i]  # remove duplicates #去除重复的数据
                    if segments:
                        segments = segments[i]
                    msg = f'{prefix}WARNING: {im_file}: {nl - len(i)} duplicate labels removed'
            else:
                ne = 1  # label empty
                lb = np.zeros((0, 5), dtype=np.float32)
        else:
            nm = 1  # label missing
            lb = np.zeros((0, 5), dtype=np.float32)
        return im_file, lb, shape, segments, nm, nf, ne, nc, msg
    except Exception as e:
        nc = 1
        msg = f'{prefix}WARNING: {im_file}: ignoring corrupt image/label: {e}'
        return [None, None, None, None, nm, nf, ne, nc, msg]


def dataset_stats(path='coco128.yaml', autodownload=False, verbose=False, profile=False, hub=False):
    """ Return dataset statistics dictionary with images and instances counts per split per class
    To run in parent directory: export PYTHONPATH="$PWD/yolov5"
    Usage1: from utils.datasets import *; dataset_stats('coco128.yaml', autodownload=True)
    Usage2: from utils.datasets import *; dataset_stats('path/to/coco128_with_yaml.zip')
    Arguments
        path:           Path to data.yaml or data.zip (with data.yaml inside data.zip)
        autodownload:   Attempt to download dataset if not found locally
        verbose:        Print stats dictionary
    """

    def round_labels(labels):
        # Update labels to integer class and 6 decimal place floats
        return [[int(c), *(round(x, 4) for x in points)] for c, *points in labels]

    def unzip(path):
        # Unzip data.zip TODO: CONSTRAINT: path/to/abc.zip MUST unzip to 'path/to/abc/'
        if str(path).endswith('.zip'):  # path is data.zip
            assert Path(path).is_file(), f'Error unzipping {path}, file not found'
            ZipFile(path).extractall(path=path.parent)  # unzip
            dir = path.with_suffix('')  # dataset directory == zip name
            return True, str(dir), next(dir.rglob('*.yaml'))  # zipped, data_dir, yaml_path
        else:  # path is data.yaml
            return False, None, path

    def hub_ops(f, max_dim=1920):
        # HUB ops for 1 image 'f': resize and save at reduced quality in /dataset-hub for web/app viewing
        f_new = im_dir / Path(f).name  # dataset-hub image filename
        try:  # use PIL
            im = Image.open(f)
            r = max_dim / max(im.height, im.width)  # ratio
            if r < 1.0:  # image too large
                im = im.resize((int(im.width * r), int(im.height * r)))
            im.save(f_new, 'JPEG', quality=75, optimize=True)  # save
        except Exception as e:  # use OpenCV
            print(f'WARNING: HUB ops PIL failure {f}: {e}')
            im = cv2.imread(f)
            im_height, im_width = im.shape[:2]
            r = max_dim / max(im_height, im_width)  # ratio
            if r < 1.0:  # image too large
                im = cv2.resize(im, (int(im_width * r), int(im_height * r)), interpolation=cv2.INTER_AREA)
            cv2.imwrite(str(f_new), im)

    zipped, data_dir, yaml_path = unzip(Path(path))
    with open(check_yaml(yaml_path), errors='ignore') as f:
        data = yaml.safe_load(f)  # data dict
        if zipped:
            data['path'] = data_dir  # TODO: should this be dir.resolve()?
    check_dataset(data, autodownload)  # download dataset if missing
    hub_dir = Path(data['path'] + ('-hub' if hub else ''))
    stats = {'nc': data['nc'], 'names': data['names']}  # statistics dictionary
    for split in 'train', 'val', 'test':
        if data.get(split) is None:
            stats[split] = None  # i.e. no test set
            continue
        x = []
        dataset = LoadImagesAndLabels(data[split])  # load dataset
        for label in tqdm(dataset.labels, total=dataset.n, desc='Statistics'):
            x.append(np.bincount(label[:, 0].astype(int), minlength=data['nc']))
        x = np.array(x)  # shape(128x80)
        stats[split] = {'instance_stats': {'total': int(x.sum()), 'per_class': x.sum(0).tolist()},
                        'image_stats': {'total': dataset.n, 'unlabelled': int(np.all(x == 0, 1).sum()),
                                        'per_class': (x > 0).sum(0).tolist()},
                        'labels': [{str(Path(k).name): round_labels(v.tolist())} for k, v in
                                   zip(dataset.im_files, dataset.labels)]}

        if hub:
            im_dir = hub_dir / 'images'
            im_dir.mkdir(parents=True, exist_ok=True)
            for _ in tqdm(ThreadPool(NUM_THREADS).imap(hub_ops, dataset.im_files), total=dataset.n, desc='HUB Ops'):
                pass

    # Profile
    stats_path = hub_dir / 'stats.json'
    if profile:
        for _ in range(1):
            file = stats_path.with_suffix('.npy')
            t1 = time.time()
            np.save(file, stats)
            t2 = time.time()
            x = np.load(file, allow_pickle=True)
            print(f'stats.npy times: {time.time() - t2:.3f}s read, {t2 - t1:.3f}s write')

            file = stats_path.with_suffix('.json')
            t1 = time.time()
            with open(file, 'w') as f:
                json.dump(stats, f)  # save stats *.json
            t2 = time.time()
            with open(file) as f:
                x = json.load(f)  # load hyps dict
            print(f'stats.json times: {time.time() - t2:.3f}s read, {t2 - t1:.3f}s write')

    # Save, print and return
    if hub:
        print(f'Saving {stats_path.resolve()}...')
        with open(stats_path, 'w') as f:
            json.dump(stats, f)  # save stats.json
    if verbose:
        print(json.dumps(stats, indent=2, sort_keys=False))
    return stats

2.5 utils/metrics.py性能指标

def fitness(x):
    # Model fitness as a weighted combination of metrics
    w = [0.0, 0.0, 0.1, 0.9]  # weights for [P, R, [email protected], [email protected]:0.95]
    return (x[:, :4] * w).sum(1)


def ap_per_class(tp, conf, pred_cls, target_cls, plot=False, save_dir='.', names=(), eps=1e-16):
    """ Compute the average precision, given the recall and precision curves.
    Source: https://github.com/rafaelpadilla/Object-Detection-Metrics.
    # Arguments
        tp:  True positives (nparray, nx1 or nx10).
        conf:  Objectness value from 0-1 (nparray).
        pred_cls:  Predicted object classes (nparray).
        target_cls:  True object classes (nparray).
        plot:  Plot precision-recall curve at [email protected]
        save_dir:  Plot save directory
    # Returns
        The average precision as computed in py-faster-rcnn.
    """

    # Sort by objectness
    i = np.argsort(-conf)
    tp, conf, pred_cls = tp[i], conf[i], pred_cls[i]

    # Find unique classes
    unique_classes, nt = np.unique(target_cls, return_counts=True)
    nc = unique_classes.shape[0]  # number of classes, number of detections

    # Create Precision-Recall curve and compute AP for each class
    px, py = np.linspace(0, 1, 1000), []  # for plotting
    ap, p, r = np.zeros((nc, tp.shape[1])), np.zeros((nc, 1000)), np.zeros((nc, 1000))
    for ci, c in enumerate(unique_classes):
        i = pred_cls == c
        n_l = nt[ci]  # number of labels
        n_p = i.sum()  # number of predictions

        if n_p == 0 or n_l == 0:
            continue
        else:
            # Accumulate FPs and TPs
            fpc = (1 - tp[i]).cumsum(0)
            tpc = tp[i].cumsum(0)

            # Recall
            recall = tpc / (n_l + eps)  # recall curve
            r[ci] = np.interp(-px, -conf[i], recall[:, 0], left=0)  # negative x, xp because xp decreases

            # Precision
            precision = tpc / (tpc + fpc)  # precision curve
            p[ci] = np.interp(-px, -conf[i], precision[:, 0], left=1)  # p at pr_score

            # AP from recall-precision curve
            for j in range(tp.shape[1]):
                ap[ci, j], mpre, mrec = compute_ap(recall[:, j], precision[:, j])
                if plot and j == 0:
                    py.append(np.interp(px, mrec, mpre))  # precision at [email protected]

    # Compute F1 (harmonic mean of precision and recall)
    f1 = 2 * p * r / (p + r + eps)
    names = [v for k, v in names.items() if k in unique_classes]  # list: only classes that have data
    names = {i: v for i, v in enumerate(names)}  # to dict
    if plot:
        plot_pr_curve(px, py, ap, Path(save_dir) / 'PR_curve.png', names)
        plot_mc_curve(px, f1, Path(save_dir) / 'F1_curve.png', names, ylabel='F1')
        plot_mc_curve(px, p, Path(save_dir) / 'P_curve.png', names, ylabel='Precision')
        plot_mc_curve(px, r, Path(save_dir) / 'R_curve.png', names, ylabel='Recall')

    i = f1.mean(0).argmax()  # max F1 index
    p, r, f1 = p[:, i], r[:, i], f1[:, i]
    tp = (r * nt).round()  # true positives
    fp = (tp / (p + eps) - tp).round()  # false positives
    return tp, fp, p, r, f1, ap, unique_classes.astype('int32')


def compute_ap(recall, precision):
    """ Compute the average precision, given the recall and precision curves
    # Arguments
        recall:    The recall curve (list)
        precision: The precision curve (list)
    # Returns
        Average precision, precision curve, recall curve
    """

    # Append sentinel values to beginning and end
    mrec = np.concatenate(([0.0], recall, [1.0]))
    mpre = np.concatenate(([1.0], precision, [0.0]))

    # Compute the precision envelope
    mpre = np.flip(np.maximum.accumulate(np.flip(mpre)))

    # Integrate area under curve
    method = 'interp'  # methods: 'continuous', 'interp'
    if method == 'interp':
        x = np.linspace(0, 1, 101)  # 101-point interp (COCO)
        ap = np.trapz(np.interp(x, mrec, mpre), x)  # integrate
    else:  # 'continuous'
        i = np.where(mrec[1:] != mrec[:-1])[0]  # points where x axis (recall) changes
        ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1])  # area under curve

    return ap, mpre, mrec


class ConfusionMatrix:
    # Updated version of https://github.com/kaanakan/object_detection_confusion_matrix
    def __init__(self, nc, conf=0.25, iou_thres=0.45):
        self.matrix = np.zeros((nc + 1, nc + 1))
        self.nc = nc  # number of classes
        self.conf = conf
        self.iou_thres = iou_thres

    def process_batch(self, detections, labels):
        """
        Return intersection-over-union (Jaccard index) of boxes.
        Both sets of boxes are expected to be in (x1, y1, x2, y2) format.
        Arguments:
            detections (Array[N, 6]), x1, y1, x2, y2, conf, class
            labels (Array[M, 5]), class, x1, y1, x2, y2
        Returns:
            None, updates confusion matrix accordingly
        """
        detections = detections[detections[:, 4] > self.conf]
        gt_classes = labels[:, 0].int()
        detection_classes = detections[:, 5].int()
        iou = box_iou(labels[:, 1:], detections[:, :4])

        x = torch.where(iou > self.iou_thres)
        if x[0].shape[0]:
            matches = torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]), 1).cpu().numpy()
            if x[0].shape[0] > 1:
                matches = matches[matches[:, 2].argsort()[::-1]]
                matches = matches[np.unique(matches[:, 1], return_index=True)[1]]
                matches = matches[matches[:, 2].argsort()[::-1]]
                matches = matches[np.unique(matches[:, 0], return_index=True)[1]]
        else:
            matches = np.zeros((0, 3))

        n = matches.shape[0] > 0
        m0, m1, _ = matches.transpose().astype(np.int16)
        for i, gc in enumerate(gt_classes):
            j = m0 == i
            if n and sum(j) == 1:
                self.matrix[detection_classes[m1[j]], gc] += 1  # correct
            else:
                self.matrix[self.nc, gc] += 1  # background FP

        if n:
            for i, dc in enumerate(detection_classes):
                if not any(m1 == i):
                    self.matrix[dc, self.nc] += 1  # background FN

    def matrix(self):
        return self.matrix

    def tp_fp(self):
        tp = self.matrix.diagonal()  # true positives
        fp = self.matrix.sum(1) - tp  # false positives
        # fn = self.matrix.sum(0) - tp  # false negatives (missed detections)
        return tp[:-1], fp[:-1]  # remove background class

    def plot(self, normalize=True, save_dir='', names=()):
        try:
            import seaborn as sn

            array = self.matrix / ((self.matrix.sum(0).reshape(1, -1) + 1E-9) if normalize else 1)  # normalize columns
            array[array < 0.005] = np.nan  # don't annotate (would appear as 0.00)

            fig = plt.figure(figsize=(12, 9), tight_layout=True)
            nc, nn = self.nc, len(names)  # number of classes, names
            sn.set(font_scale=1.0 if nc < 50 else 0.8)  # for label size
            labels = (0 < nn < 99) and (nn == nc)  # apply names to ticklabels
            with warnings.catch_warnings():
                warnings.simplefilter('ignore')  # suppress empty matrix RuntimeWarning: All-NaN slice encountered
                sn.heatmap(array, annot=nc < 30, annot_kws={"size": 8}, cmap='Blues', fmt='.2f', square=True, vmin=0.0,
                           xticklabels=names + ['background FP'] if labels else "auto",
                           yticklabels=names + ['background FN'] if labels else "auto").set_facecolor((1, 1, 1))
            fig.axes[0].set_xlabel('True')
            fig.axes[0].set_ylabel('Predicted')
            fig.savefig(Path(save_dir) / 'confusion_matrix.png', dpi=250)
            plt.close()
        except Exception as e:
            print(f'WARNING: ConfusionMatrix plot failure: {e}')

    def print(self):
        for i in range(self.nc + 1):
            print(' '.join(map(str, self.matrix[i])))


def bbox_iou(box1, box2, x1y1x2y2=True, GIoU=False, DIoU=False, CIoU=False, eps=1e-7):
    # Returns the IoU of box1 to box2. box1 is 4, box2 is nx4
    box2 = box2.T

    # Get the coordinates of bounding boxes
    if x1y1x2y2:  # x1, y1, x2, y2 = box1
        b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2], box1[3]
        b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2], box2[3]
    else:  # transform from xywh to xyxy
        b1_x1, b1_x2 = box1[0] - box1[2] / 2, box1[0] + box1[2] / 2
        b1_y1, b1_y2 = box1[1] - box1[3] / 2, box1[1] + box1[3] / 2
        b2_x1, b2_x2 = box2[0] - box2[2] / 2, box2[0] + box2[2] / 2
        b2_y1, b2_y2 = box2[1] - box2[3] / 2, box2[1] + box2[3] / 2

    # Intersection area
    inter = (torch.min(b1_x2, b2_x2) - torch.max(b1_x1, b2_x1)).clamp(0) * \
            (torch.min(b1_y2, b2_y2) - torch.max(b1_y1, b2_y1)).clamp(0)

    # Union Area
    w1, h1 = b1_x2 - b1_x1, b1_y2 - b1_y1 + eps
    w2, h2 = b2_x2 - b2_x1, b2_y2 - b2_y1 + eps
    union = w1 * h1 + w2 * h2 - inter + eps

    iou = inter / union
    if CIoU or DIoU or GIoU:
        cw = torch.max(b1_x2, b2_x2) - torch.min(b1_x1, b2_x1)  # convex (smallest enclosing box) width
        ch = torch.max(b1_y2, b2_y2) - torch.min(b1_y1, b2_y1)  # convex height
        if CIoU or DIoU:  # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1
            c2 = cw ** 2 + ch ** 2 + eps  # convex diagonal squared
            rho2 = ((b2_x1 + b2_x2 - b1_x1 - b1_x2) ** 2 +
                    (b2_y1 + b2_y2 - b1_y1 - b1_y2) ** 2) / 4  # center distance squared
            if CIoU:  # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47
                v = (4 / math.pi ** 2) * torch.pow(torch.atan(w2 / h2) - torch.atan(w1 / h1), 2)
                with torch.no_grad():
                    alpha = v / (v - iou + (1 + eps))
                return iou - (rho2 / c2 + v * alpha)  # CIoU
            return iou - rho2 / c2  # DIoU
        c_area = cw * ch + eps  # convex area
        return iou - (c_area - union) / c_area  # GIoU https://arxiv.org/pdf/1902.09630.pdf
    return iou  # IoU


def box_iou(box1, box2):
    # https://github.com/pytorch/vision/blob/master/torchvision/ops/boxes.py
    """
    Return intersection-over-union (Jaccard index) of boxes.
    Both sets of boxes are expected to be in (x1, y1, x2, y2) format.
    Arguments:
        box1 (Tensor[N, 4])
        box2 (Tensor[M, 4])
    Returns:
        iou (Tensor[N, M]): the NxM matrix containing the pairwise
            IoU values for every element in boxes1 and boxes2
    """

    def box_area(box):
        # box = 4xn
        return (box[2] - box[0]) * (box[3] - box[1])

    area1 = box_area(box1.T)
    area2 = box_area(box2.T)

    # inter(N,M) = (rb(N,M,2) - lt(N,M,2)).clamp(0).prod(2)
    inter = (torch.min(box1[:, None, 2:], box2[:, 2:]) - torch.max(box1[:, None, :2], box2[:, :2])).clamp(0).prod(2)
    return inter / (area1[:, None] + area2 - inter)  # iou = inter / (area1 + area2 - inter)


def bbox_ioa(box1, box2, eps=1E-7):
    """ Returns the intersection over box2 area given box1, box2. Boxes are x1y1x2y2
    box1:       np.array of shape(4)
    box2:       np.array of shape(nx4)
    returns:    np.array of shape(n)
    """

    box2 = box2.transpose()

    # Get the coordinates of bounding boxes
    b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2], box1[3]
    b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2], box2[3]

    # Intersection area
    inter_area = (np.minimum(b1_x2, b2_x2) - np.maximum(b1_x1, b2_x1)).clip(0) * \
                 (np.minimum(b1_y2, b2_y2) - np.maximum(b1_y1, b2_y1)).clip(0)

    # box2 area
    box2_area = (b2_x2 - b2_x1) * (b2_y2 - b2_y1) + eps

    # Intersection over box2 area
    return inter_area / box2_area


def wh_iou(wh1, wh2):
    # Returns the nxm IoU matrix. wh1 is nx2, wh2 is mx2
    wh1 = wh1[:, None]  # [N,1,2]
    wh2 = wh2[None]  # [1,M,2]
    inter = torch.min(wh1, wh2).prod(2)  # [N,M]
    return inter / (wh1.prod(2) + wh2.prod(2) - inter)  # iou = inter / (area1 + area2 - inter)


# Plots ----------------------------------------------------------------------------------------------------------------

def plot_pr_curve(px, py, ap, save_dir='pr_curve.png', names=()):
    # Precision-recall curve
    fig, ax = plt.subplots(1, 1, figsize=(9, 6), tight_layout=True)
    py = np.stack(py, axis=1)

    if 0 < len(names) < 21:  # display per-class legend if < 21 classes
        for i, y in enumerate(py.T):
            ax.plot(px, y, linewidth=1, label=f'{names[i]} {ap[i, 0]:.3f}')  # plot(recall, precision)
    else:
        ax.plot(px, py, linewidth=1, color='grey')  # plot(recall, precision)

    ax.plot(px, py.mean(1), linewidth=3, color='blue', label='all classes %.3f [email protected]' % ap[:, 0].mean())
    ax.set_xlabel('Recall')
    ax.set_ylabel('Precision')
    ax.set_xlim(0, 1)
    ax.set_ylim(0, 1)
    plt.legend(bbox_to_anchor=(1.04, 1), loc="upper left")
    fig.savefig(Path(save_dir), dpi=250)
    plt.close()


def plot_mc_curve(px, py, save_dir='mc_curve.png', names=(), xlabel='Confidence', ylabel='Metric'):
    # Metric-confidence curve
    fig, ax = plt.subplots(1, 1, figsize=(9, 6), tight_layout=True)

    if 0 < len(names) < 21:  # display per-class legend if < 21 classes
        for i, y in enumerate(py):
            ax.plot(px, y, linewidth=1, label=f'{names[i]}')  # plot(confidence, metric)
    else:
        ax.plot(px, py.T, linewidth=1, color='grey')  # plot(confidence, metric)

    y = py.mean(0)
    ax.plot(px, y, linewidth=3, color='blue', label=f'all classes {y.max():.2f} at {px[y.argmax()]:.3f}')
    ax.set_xlabel(xlabel)
    ax.set_ylabel(ylabel)
    ax.set_xlim(0, 1)
    ax.set_ylim(0, 1)
    plt.legend(bbox_to_anchor=(1.04, 1), loc="upper left")
    fig.savefig(Path(save_dir), dpi=250)
    plt.close()

2.6 utils/loss.py 损失函数

def smooth_BCE(eps=0.1):  # https://github.com/ultralytics/yolov3/issues/238#issuecomment-598028441
    # return positive, negative label smoothing BCE targets
    return 1.0 - 0.5 * eps, 0.5 * eps


class BCEBlurWithLogitsLoss(nn.Module):
    # BCEwithLogitLoss() with reduced missing label effects.
    def __init__(self, alpha=0.05):
        super().__init__()
        self.loss_fcn = nn.BCEWithLogitsLoss(reduction='none')  # must be nn.BCEWithLogitsLoss()
        self.alpha = alpha

    def forward(self, pred, true):
        loss = self.loss_fcn(pred, true)
        pred = torch.sigmoid(pred)  # prob from logits
        dx = pred - true  # reduce only missing label effects
        # dx = (pred - true).abs()  # reduce missing label and false label effects
        alpha_factor = 1 - torch.exp((dx - 1) / (self.alpha + 1e-4))
        loss *= alpha_factor
        return loss.mean()


class FocalLoss(nn.Module):
    # Wraps focal loss around existing loss_fcn(), i.e. criteria = FocalLoss(nn.BCEWithLogitsLoss(), gamma=1.5)
    def __init__(self, loss_fcn, gamma=1.5, alpha=0.25):
        super().__init__()
        self.loss_fcn = loss_fcn  # must be nn.BCEWithLogitsLoss()
        self.gamma = gamma
        self.alpha = alpha
        self.reduction = loss_fcn.reduction
        self.loss_fcn.reduction = 'none'  # required to apply FL to each element

    def forward(self, pred, true):
        loss = self.loss_fcn(pred, true)
        # p_t = torch.exp(-loss)
        # loss *= self.alpha * (1.000001 - p_t) ** self.gamma  # non-zero power for gradient stability

        # TF implementation https://github.com/tensorflow/addons/blob/v0.7.1/tensorflow_addons/losses/focal_loss.py
        pred_prob = torch.sigmoid(pred)  # prob from logits
        p_t = true * pred_prob + (1 - true) * (1 - pred_prob)
        alpha_factor = true * self.alpha + (1 - true) * (1 - self.alpha)
        modulating_factor = (1.0 - p_t) ** self.gamma
        loss *= alpha_factor * modulating_factor

        if self.reduction == 'mean':
            return loss.mean()
        elif self.reduction == 'sum':
            return loss.sum()
        else:  # 'none'
            return loss


class QFocalLoss(nn.Module):
    # Wraps Quality focal loss around existing loss_fcn(), i.e. criteria = FocalLoss(nn.BCEWithLogitsLoss(), gamma=1.5)
    def __init__(self, loss_fcn, gamma=1.5, alpha=0.25):
        super().__init__()
        self.loss_fcn = loss_fcn  # must be nn.BCEWithLogitsLoss()
        self.gamma = gamma
        self.alpha = alpha
        self.reduction = loss_fcn.reduction
        self.loss_fcn.reduction = 'none'  # required to apply FL to each element

    def forward(self, pred, true):
        loss = self.loss_fcn(pred, true)

        pred_prob = torch.sigmoid(pred)  # prob from logits
        alpha_factor = true * self.alpha + (1 - true) * (1 - self.alpha)
        modulating_factor = torch.abs(true - pred_prob) ** self.gamma
        loss *= alpha_factor * modulating_factor

        if self.reduction == 'mean':
            return loss.mean()
        elif self.reduction == 'sum':
            return loss.sum()
        else:  # 'none'
            return loss


class ComputeLoss:
    # Compute losses
    def __init__(self, model, autobalance=False):
        self.sort_obj_iou = False
        device = next(model.parameters()).device  # get model device
        h = model.hyp  # hyperparameters

        # Define criteria
        BCEcls = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['cls_pw']], device=device))
        BCEobj = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['obj_pw']], device=device))

        # Class label smoothing https://arxiv.org/pdf/1902.04103.pdf eqn 3
        self.cp, self.cn = smooth_BCE(eps=h.get('label_smoothing', 0.0))  # positive, negative BCE targets

        # Focal loss
        g = h['fl_gamma']  # focal loss gamma
        if g > 0:
            BCEcls, BCEobj = FocalLoss(BCEcls, g), FocalLoss(BCEobj, g)

        det = de_parallel(model).model[-1]  # Detect() module
        self.balance = {3: [4.0, 1.0, 0.4]}.get(det.nl, [4.0, 1.0, 0.25, 0.06, 0.02])  # P3-P7
        self.ssi = list(det.stride).index(16) if autobalance else 0  # stride 16 index
        self.BCEcls, self.BCEobj, self.gr, self.hyp, self.autobalance = BCEcls, BCEobj, 1.0, h, autobalance
        for k in 'na', 'nc', 'nl', 'anchors':
            setattr(self, k, getattr(det, k))

    def __call__(self, p, targets):  # predictions, targets, model
        device = targets.device
        lcls, lbox, lobj = torch.zeros(1, device=device), torch.zeros(1, device=device), torch.zeros(1, device=device)
        tcls, tbox, indices, anchors = self.build_targets(p, targets)  # targets

        # Losses
        for i, pi in enumerate(p):  # layer index, layer predictions
            b, a, gj, gi = indices[i]  # image, anchor, gridy, gridx
            tobj = torch.zeros_like(pi[..., 0], device=device)  # target obj

            n = b.shape[0]  # number of targets
            if n:
                ps = pi[b, a, gj, gi]  # prediction subset corresponding to targets

                # Regression
                pxy = ps[:, :2].sigmoid() * 2 - 0.5
                pwh = (ps[:, 2:4].sigmoid() * 2) ** 2 * anchors[i]
                pbox = torch.cat((pxy, pwh), 1)  # predicted box
                iou = bbox_iou(pbox.T, tbox[i], x1y1x2y2=False, CIoU=True)  # iou(prediction, target)
                lbox += (1.0 - iou).mean()  # iou loss

                # Objectness
                score_iou = iou.detach().clamp(0).type(tobj.dtype)
                if self.sort_obj_iou:
                    sort_id = torch.argsort(score_iou)
                    b, a, gj, gi, score_iou = b[sort_id], a[sort_id], gj[sort_id], gi[sort_id], score_iou[sort_id]
                tobj[b, a, gj, gi] = (1.0 - self.gr) + self.gr * score_iou  # iou ratio

                # Classification
                if self.nc > 1:  # cls loss (only if multiple classes)
                    t = torch.full_like(ps[:, 5:], self.cn, device=device)  # targets
                    t[range(n), tcls[i]] = self.cp
                    lcls += self.BCEcls(ps[:, 5:], t)  # BCE

                # Append targets to text file
                # with open('targets.txt', 'a') as file:
                #     [file.write('%11.5g ' * 4 % tuple(x) + '\n') for x in torch.cat((txy[i], twh[i]), 1)]

            obji = self.BCEobj(pi[..., 4], tobj)
            lobj += obji * self.balance[i]  # obj loss
            if self.autobalance:
                self.balance[i] = self.balance[i] * 0.9999 + 0.0001 / obji.detach().item()

        if self.autobalance:
            self.balance = [x / self.balance[self.ssi] for x in self.balance]
        lbox *= self.hyp['box']
        lobj *= self.hyp['obj']
        lcls *= self.hyp['cls']
        bs = tobj.shape[0]  # batch size

        return (lbox + lobj + lcls) * bs, torch.cat((lbox, lobj, lcls)).detach()

    def build_targets(self, p, targets):
        # Build targets for compute_loss(), input targets(image,class,x,y,w,h)
        na, nt = self.na, targets.shape[0]  # number of anchors, targets
        tcls, tbox, indices, anch = [], [], [], []
        gain = torch.ones(7, device=targets.device)  # normalized to gridspace gain
        ai = torch.arange(na, device=targets.device).float().view(na, 1).repeat(1, nt)  # same as .repeat_interleave(nt)
        targets = torch.cat((targets.repeat(na, 1, 1), ai[:, :, None]), 2)  # append anchor indices

        g = 0.5  # bias
        off = torch.tensor([[0, 0],
                            [1, 0], [0, 1], [-1, 0], [0, -1],  # j,k,l,m
                            # [1, 1], [1, -1], [-1, 1], [-1, -1],  # jk,jm,lk,lm
                            ], device=targets.device).float() * g  # offsets

        for i in range(self.nl):
            anchors, shape = self.anchors[i], p[i].shape 
            gain[2:6] = torch.tensor(p[i].shape)[[3, 2, 3, 2]]  # xyxy gain

            # Match targets to anchors
            t = targets * gain
            if nt:
                # Matches
                r = t[:, :, 4:6] / anchors[:, None]  # wh ratio
                j = torch.max(r, 1 / r).max(2)[0] < self.hyp['anchor_t']  # compare
                # j = wh_iou(anchors, t[:, 4:6]) > model.hyp['iou_t']  # iou(3,n)=wh_iou(anchors(3,2), gwh(n,2))
                t = t[j]  # filter

                # Offsets
                gxy = t[:, 2:4]  # grid xy
                gxi = gain[[2, 3]] - gxy  # inverse
                j, k = ((gxy % 1 < g) & (gxy > 1)).T
                l, m = ((gxi % 1 < g) & (gxi > 1)).T
                j = torch.stack((torch.ones_like(j), j, k, l, m))
                t = t.repeat((5, 1, 1))[j]
                offsets = (torch.zeros_like(gxy)[None] + off[:, None])[j]
            else:
                t = targets[0]
                offsets = 0

            # Define
            b, c = t[:, :2].long().T  # image, class
            gxy = t[:, 2:4]  # grid xy
            gwh = t[:, 4:6]  # grid wh
            gij = (gxy - offsets).long()
            gi, gj = gij.T  # grid xy indices

            # Append
            a = t[:, 6].long()  # anchor indices
            indices.append((b, a, gj.clamp_(0, shape[2] - 1), gi.clamp_(0, shape[3] - 1)))  # image, anchor, grid
            tbox.append(torch.cat((gxy - gij, gwh), 1))  # box
            anch.append(anchors[a])  # anchors
            tcls.append(c)  # class

        return tcls, tbox, indices, anch

2.7 utils/autoanchor.py 自动锚框

def check_anchor_order(m):
    # Check anchor order against stride order for YOLOv5 Detect() module m, and correct if necessary
    a = m.anchors.prod(-1).view(-1)  # anchor area
    da = a[-1] - a[0]  # delta a
    ds = m.stride[-1] - m.stride[0]  # delta s
    if da.sign() != ds.sign():  # same order
        LOGGER.info(f'{PREFIX}Reversing anchor order')
        m.anchors[:] = m.anchors.flip(0)

#自动计算最佳锚框
def check_anchors(dataset, model, thr=4.0, imgsz=640): 
#thr阈值
    # Check anchor fit to data, recompute if necessary
    m = model.module.model[-1] if hasattr(model, 'module') else model.model[-1]  # Detect()
    shapes = imgsz * dataset.shapes / dataset.shapes.max(1, keepdims=True)
    scale = np.random.uniform(0.9, 1.1, size=(shapes.shape[0], 1))  # augment scale
    wh = torch.tensor(np.concatenate([l[:, 3:5] * s for s, l in zip(shapes * scale, dataset.labels)])).float()  # 标签的wh值

    def metric(k):  # compute metric
        r = wh[:, None] / k[None]
        x = torch.min(r, 1 / r).min(2)[0]  # ratio metric
        best = x.max(1)[0]  # best_x
        aat = (x > 1 / thr).float().sum(1).mean()  # anchors above threshold
        bpr = (best > 1 / thr).float().mean()  # best possible recall
        return bpr, aat

    anchors = m.anchors.clone() * m.stride.to(m.anchors.device).view(-1, 1, 1)  # current anchors
    bpr, aat = metric(anchors.cpu().view(-1, 2))
    s = f'\n{PREFIX}{aat:.2f} anchors/target, {bpr:.3f} Best Possible Recall (BPR). '
    if bpr > 0.98:  # threshold to recompute 小于阈值会通过kmeans聚类新的锚框
        LOGGER.info(emojis(f'{s}Current anchors are a good fit to dataset ✅'))
    else:
        LOGGER.info(emojis(f'{s}Anchors are a poor fit to dataset ⚠️, attempting to improve...'))
        na = m.anchors.numel() // 2  # number of anchors
        try:
            anchors = kmean_anchors(dataset, n=na, img_size=imgsz, thr=thr, gen=1000, verbose=False)
        except Exception as e:
            LOGGER.info(f'{PREFIX}ERROR: {e}')
        new_bpr = metric(anchors)[0]
        if new_bpr > bpr:  # replace anchors
            anchors = torch.tensor(anchors, device=m.anchors.device).type_as(m.anchors)
            m.anchors[:] = anchors.clone().view_as(m.anchors) / m.stride.to(m.anchors.device).view(-1, 1, 1)  # loss
            check_anchor_order(m)
            s = f'{PREFIX}Done ✅ (optional: update model *.yaml to use these anchors in the future)'
        else:
            s = f'{PREFIX}Done ⚠️ (original anchors better than new anchors, proceeding with original anchors)'
        LOGGER.info(emojis(s))

#对anchors做kmeans聚类
def kmean_anchors(dataset='./data/coco128.yaml', n=9, img_size=640, thr=4.0, gen=1000, verbose=True):
    """ Creates kmeans-evolved anchors from training dataset

        Arguments:
            dataset: path to data.yaml, or a loaded dataset
            n: number of anchors
            img_size: image size used for training
            thr: anchor-label wh ratio threshold hyperparameter hyp['anchor_t'] used for training, default=4.0
            gen: generations to evolve anchors using genetic algorithm
            verbose: print all results

        Return:
            k: kmeans evolved anchors

        Usage:
            from utils.autoanchor import *; _ = kmean_anchors()
    """
    from scipy.cluster.vq import kmeans

    npr = np.random
    thr = 1 / thr

    def metric(k, wh):  # compute metrics
        r = wh[:, None] / k[None]
        x = torch.min(r, 1 / r).min(2)[0]  # ratio metric
        # x = wh_iou(wh, torch.tensor(k))  # iou metric
        return x, x.max(1)[0]  # x, best_x

    def anchor_fitness(k):  # mutation fitness
        _, best = metric(torch.tensor(k, dtype=torch.float32), wh)
        return (best * (best > thr).float()).mean()  # fitness

    def print_results(k, verbose=True):
        k = k[np.argsort(k.prod(1))]  # sort small to large
        x, best = metric(k, wh0)
        bpr, aat = (best > thr).float().mean(), (x > thr).float().mean() * n  # best possible recall, anch > thr
        s = f'{PREFIX}thr={thr:.2f}: {bpr:.4f} best possible recall, {aat:.2f} anchors past thr\n' \
            f'{PREFIX}n={n}, img_size={img_size}, metric_all={x.mean():.3f}/{best.mean():.3f}-mean/best, ' \
            f'past_thr={x[x > thr].mean():.3f}-mean: '
        for i, x in enumerate(k):
            s += '%i,%i, ' % (round(x[0]), round(x[1]))
        if verbose:
            LOGGER.info(s[:-2])
        return k

    if isinstance(dataset, str):  # *.yaml file
        with open(dataset, errors='ignore') as f:
            data_dict = yaml.safe_load(f)  # model dict
        from utils.datasets import LoadImagesAndLabels
        dataset = LoadImagesAndLabels(data_dict['train'], augment=True, rect=True)

    # Get label wh
    shapes = img_size * dataset.shapes / dataset.shapes.max(1, keepdims=True)
    wh0 = np.concatenate([l[:, 3:5] * s for s, l in zip(shapes, dataset.labels)])  # wh

    # Filter
    i = (wh0 < 3.0).any(1).sum() #目标框宽高小于3警告
    if i:
        LOGGER.info(f'{PREFIX}WARNING: Extremely small objects found: {i} of {len(wh0)} labels are < 3 pixels in size')
    wh = wh0[(wh0 >= 2.0).any(1)]  # filter > 2 pixels
    # wh = wh * (npr.rand(wh.shape[0], 1) * 0.9 + 0.1)  # multiply by random scale 0-1

    # Kmeans init
    try:
        LOGGER.info(f'{PREFIX}Running kmeans for {n} anchors on {len(wh)} points...')
        assert n <= len(wh)  # apply overdetermined constraint
        s = wh.std(0)  # sigmas for whitening
        k = kmeans(wh / s, n, iter=30)[0] * s  # points
        assert n == len(k)  # kmeans may return fewer points than requested if wh is insufficient or too similar
    except Exception:
        LOGGER.warning(f'{PREFIX}WARNING: switching strategies from kmeans to random init')
        k = np.sort(npr.rand(n * 2)).reshape(n, 2) * img_size  # random init
    wh, wh0 = (torch.tensor(x, dtype=torch.float32) for x in (wh, wh0))
    k = print_results(k, verbose=False)

    # Plot
    # k, d = [None] * 20, [None] * 20
    # for i in tqdm(range(1, 21)):
    #     k[i-1], d[i-1] = kmeans(wh / s, i)  # points, mean distance
    # fig, ax = plt.subplots(1, 2, figsize=(14, 7), tight_layout=True)
    # ax = ax.ravel()
    # ax[0].plot(np.arange(1, 21), np.array(d) ** 2, marker='.')
    # fig, ax = plt.subplots(1, 2, figsize=(14, 7))  # plot wh
    # ax[0].hist(wh[wh[:, 0]<100, 0],400)
    # ax[1].hist(wh[wh[:, 1]<100, 1],400)
    # fig.savefig('wh.png', dpi=200)

    # Evolve
    f, sh, mp, s = anchor_fitness(k), k.shape, 0.9, 0.1  # fitness, generations, mutation prob, sigma
    pbar = tqdm(range(gen), bar_format='{l_bar}{bar:10}{r_bar}{bar:-10b}')  # progress bar
    for _ in pbar:
        v = np.ones(sh)
        while (v == 1).all():  # mutate until a change occurs (prevent duplicates)
            v = ((npr.random(sh) < mp) * random.random() * npr.randn(*sh) * s + 1).clip(0.3, 3.0)
        kg = (k.copy() * v).clip(min=2.0)
        fg = anchor_fitness(kg)
        if fg > f: #更好的锚框值
            f, k = fg, kg.copy() #使用进化后的锚框
            pbar.desc = f'{PREFIX}Evolving anchors with Genetic Algorithm: fitness = {f:.4f}'
            if verbose:
                print_results(k, verbose)

    return print_results(k)

悦读

道可道,非常道;名可名,非常名。 无名,天地之始,有名,万物之母。 故常无欲,以观其妙,常有欲,以观其徼。 此两者,同出而异名,同谓之玄,玄之又玄,众妙之门。

;