代码随想录算法训练营第十九天 | LeetCode 654. 最大二叉树、617. 合并二叉树、700. 二叉搜索树中的搜索、98. 验证二叉搜索树
文章链接:代码随想录最大二叉树 代码随想录合并二叉树 代码随想录二叉搜索树中的搜索 代码随想录验证二叉搜索树
视频链接:代码随想录最大二叉树 代码随想录合并二叉树 代码随想录二叉搜索树中的搜索 代码随想录验证二叉搜索树
1.1 思路
- 对于这题我们要构造二叉树,凡是构造二叉树类的题目都要用前序遍历,“中左右”,先构造根节点,然后再是左子树右子树,左子树和右子树也是先“中左右”。
- 递归函数的参数和返回值:返回值就是这个二叉树的根节点,参数就是数组
- 终止条件:如果数组大小等于1说明到叶子节点了,就return new TreeNode(nums[0])。
- 单层递归的逻辑:找到数组的最大值及其下标,定义一个maxValue=0,index=0。遍历数组找到它们。找到最大值就定义新节点然后把数值放入,然后就是构造节点的左右子树
- 构造子树就要分割数组,因为终止条件是至少要有一个元素的。所以我们要判断左子树是否至少有一个元素(如果左子树没元素,说明就没有左子树咯),通过(index>0)来判断左子树是否至少有一个元素,有就切割数组,新的左子树数组就是[0,index),左闭右开,包含左端点但不包含右端点,右端点是index的,是根节点不是左子树的。然后就是 node.left=函数(新的左子树数组)
- 右子树同理,至少有一个元素,理由同上,通过(index<nums.length-1)来判断右子树是否至少有一个元素,有就切割数组,新的右子树数组就是[index+1,nums.length),因为是左闭右开区间,index是根节点的,不是右子树的,而右端点不包含,就可以是nums.length。然后就是node.right=函数(新的右子树数组)
- 最后return node就是二叉树的根节点
1.2 代码
class Solution {
public TreeNode constructMaximumBinaryTree(int[] nums) {
return constructMaximumBinaryTree1(nums, 0, nums.length);
}
public TreeNode constructMaximumBinaryTree1(int[] nums, int leftIndex, int rightIndex) {
if (rightIndex - leftIndex < 1) {// 没有元素了
return null;
}
if (rightIndex - leftIndex == 1) {// 只有一个元素
return new TreeNode(nums[leftIndex]);
}
int maxIndex = leftIndex;// 最大值所在位置
int maxVal = nums[maxIndex];// 最大值
for (int i = leftIndex + 1; i < rightIndex; i++) {
if (nums[i] > maxVal){
maxVal = nums[i];
maxIndex = i;
}
}
TreeNode root = new TreeNode(maxVal);
// 根据maxIndex划分左右子树
root.left = constructMaximumBinaryTree1(nums, leftIndex, maxIndex);
root.right = constructMaximumBinaryTree1(nums, maxIndex + 1, rightIndex);
return root;
}
}
2.1 思路
- 这题考察同时操作两个二叉树的能力,这题递归的情况还是前序更方便些,也更直观
- 递归函数的参数和返回值:返回值就是合并后的二叉树的根节点,参数是一个是二叉树t1,一个是二叉树t2
- 终止条件:如果t1遍历到空就返回t2对应位置的节点,如果t2遍历到空就返回t1对应位置的节点
- 单层递归的逻辑:我们直接改t1的结构,就不创建新树了。t1.val+=t2.val。然后是递归t1.left=函数(t1.left, t2.left);t1.right=函数(t1.right, t2.right);最后return t1就是新的树了
- 如果要创建新树的话就把新树的节点的值为两树之和即可,终止条件是一样的
2.2 代码
class Solution {
// 递归
public TreeNode mergeTrees(TreeNode root1, TreeNode root2) {
if (root1 == null) return root2;
if (root2 == null) return root1;
root1.val += root2.val;
root1.left = mergeTrees(root1.left,root2.left);
root1.right = mergeTrees(root1.right,root2.right);
return root1;
}
}
3.1 递归法思路
- 二叉搜索树中自带顺序,因此不强调前中后序。
- 确定递归函数的参数和返回值:返回的是对应值的节点,参数是节点和对应值
- 终止条件:如果遍历的节点是空或者就是对应数值的节点就return root。
- 单层递归的逻辑:创建新的变量节点result=null。如果要搜索的值比root.val小,说明在左子树,就result=函数(root.left, val);果要搜索的值比root.val大,说明在右子树,就result=函数(root.right, val);如果都没有就return result。这是个null
3.2 迭代法思路
- 通过while(root!=null)遍历
- 如果查找的值比root.val小就向左遍历,root=root.left
- 如果查找的值比root.val大就向右遍历,root=root.right
- 如果找到了就直接return root
- 如果退出循环就说明没找到,就return null
3.3 代码
class Solution {
// 递归,利用二叉搜索树特点,优化
public TreeNode searchBST(TreeNode root, int val) {
if (root == null || root.val == val) {
return root;
}
if (val < root.val) {
return searchBST(root.left, val);
} else {
return searchBST(root.right, val);
}
}
}
class Solution {
// 迭代,利用二叉搜索树特点,优化,可以不需要栈
public TreeNode searchBST(TreeNode root, int val) {
while (root != null)
if (val < root.val) root = root.left;
else if (val > root.val) root = root.right;
else return root;
return null;
}
}
4.1 思路
- 二叉搜索树的遍历最好是中序,因为二叉搜索树的特性“左中右”,先左再中后右就是一个有序的顺序,从小到大的顺序
- 递归函数的返回值和参数:返回值boolean,参数就是根节点
- 终止条件:如果root是null,就return true,因为空树也是二叉搜索树,同时也是完全二叉树、满二叉树、平衡二叉树
- 单层递归的逻辑:定义一个数组,左:函数(root.left),中:把节点值放入数组,右:函数(root.right),然后判断数组是否有序,有序说明是true否则就是false
- 更优解:不用创建数组。解题误区:单纯的比较左节点小于中间节点,右节点大于中间节点,这样不全面,我们要比左子树所有节点都大,比右子树所有节点都小
- 递归过程:返回值和参数、终止条件同上。定义一个全局变量long prev=Long.MIN_VALUE,表示最小值,因为这题会出现比Integer.MIN_VALUE还小的,只能创建个更小的才行了。
- 左:boolean left=函数(root.left)。如果root的值比prev大,prev就更新为root.val,prev就记录了当前节点的前一个节点的数值,因为中序遍历的root的值是递增的,prev就会持续小于root的值,这样root.val就始终比前一个节点大,如果root的值比prev小,这样就不是二叉搜索树了,就return false;
- 右:boolean right=函数(root.right)
- return left&&right。左右子树要同时符合条件这样才是符合题意的
- 如果这里采用前一个节点与后一个节点比较的方式的话,就需要创建一个max节点,初始化为null,如果max不为空并且max.val>=root.val,就返回false。否则就更新为root节点,这样作为记录root的前一个节点,因为root每次递归的时候都是下一个节点了,那么max就是root的前一个节点。这样可以不需要long prev初始化为最小值的方式
4.2 代码
// 简洁实现·中序遍历
class Solution {
private long prev = Long.MIN_VALUE;
public boolean isValidBST(TreeNode root) {
if (root == null) {
return true;
}
if (!isValidBST(root.left)) {
return false;
}
if (root.val <= prev) { // 不满足二叉搜索树条件
return false;
}
prev = root.val;
return isValidBST(root.right);
}
}
class Solution {
// 递归
TreeNode max;
public boolean isValidBST(TreeNode root) {
if (root == null) {
return true;
}
// 左
boolean left = isValidBST(root.left);
if (!left) {
return false;
}
// 中
if (max != null && root.val <= max.val) {
return false;
}
max = root;
// 右
boolean right = isValidBST(root.right);
return right;
}
}