HTTP与HTTPS的区别,详细介绍[通俗易懂]
大家好,又见面了,我是你们的朋友运维老纪。
需要查看更多的计算机网络相关的知识?点击这里
一.目录
HTTP与HTTPS介绍
HTTPS和HTTP的主要区别
HTTPS的主干层次介绍
客户端在使用HTTPS方式与Web服务器通信时的步骤
CA证书的申请及其使用过程
SSL与TLS
SSL/TLS历史
SSL/TLS协议的基本过程
SSL/TLS 密码套件
HTTPS涉及的计算环节
HTTPS的缺点
如何优化HTTPS的速度
二.HTTP与HTTPS介绍
超文本传输协议HTTP协议被用于在Web浏览器和网站服务器之间传递信息,HTTP协议以明文方式发送内容,不提供任何方式的数据加密,如果攻击者截取了Web浏览器和网站服务器之间的传输报文,就可以直接读懂其中的信息,因此,HTTP协议不适合传输一些敏感信息,比如:信用卡号、密码等支付信息。
为了解决HTTP协议的这一缺陷,需要使用另一种协议:安全套接字层超文本传输协议HTTPS,为了数据传输的安全,HTTPS在HTTP的基础上加入了SSL/TLS协议,SSL/TLS依靠证书来验证服务器的身份,并为浏览器和服务器之间的通信加密。
HTTPS协议是由SSL/TLS+HTTP协议构建的可进行加密传输、身份认证的网络协议,要比http协议安全
HTTPS协议的主要作用可以分为两种:一种是建立一个信息安全通道,来保证数据传输的安全;另一种就是确认网站的真实性。
三.HTTPS和HTTP的主要区别
1、https协议需要到CA申请证书,一般免费证书较少,因而需要一定费用。
2、http是超文本传输协议,信息是明文传输,https则是具有安全性的ssl/tls加密传输协议。
3、http和https使用的是完全不同的连接方式,用的端口也不一样,前者是80,后者是443。
4、http的连接很简单,是无状态的;HTTPS协议是由SSL/TLS+HTTP协议构建的可进行加密传输、身份认证的网络协议,比http协议安全。
四.HTTPS的主干层次介绍
这部分内容作为前提点缀,如果你是初次了解HTTPS,看不懂这里不要紧,只要把文章后面看完,再回过头来看这里的内容,就能恍然大悟了。
第一层:HTTPS本质上是为了实现加密通信,理论上,加密通信就是双方都持有一个对称加密的秘钥,然后就可以安全通信了
但是,无论这个最初的秘钥是由客户端传给服务端,还是服务端传给客户端,都是明文传输,中间人都可以知道。那就让这个过程变成密文就好了呗,而且还得是中间人解不开的密文。
第二层:使用非对称加密 加密客户端与服务端协商生成对称秘钥之前各种盐值、种子。
但是,在使用非对称加密秘钥之前,比如由服务端生成非对称秘钥,它需要将生成的公钥给到客户端,这个时候公钥就会在网络中明文传输,任何人都可以更改,会有中间人攻击的问题。因此,只能引入公信机构CA,使我们传输自己的公钥时可以保证不会被篡改!
第三层:服务端把自己的公钥给 CA,让 CA 用 CA 的私钥加密,然后返回加密结果(可以用CA的公钥解密,如果要篡改结果,必须再次用 CA 的私钥加密,由于中间人没法获取私钥,所以无法篡改)。
五.客户端在使用HTTPS方式与Web服务器通信时的步骤
(1)客户使用https的URL访问Web服务器,要求与Web服务器建立SSL连接。
(2)Web服务器收到客户端请求后,会将网站的证书信息(证书中包含公钥)传送一份给客户端。
(3)客户端的浏览器与Web服务器开始协商SSL/TLS连接的安全等级,也就是信息加密的等级。
(4)客户端的浏览器根据双方同意的安全等级,建立会话密钥,然后利用网站的公钥将会话密钥加密,并传送给网站。
(5)Web服务器利用自己的私钥解密出会话密钥。
(6)Web服务器利用会话密钥加密与客户端之间的通信。
HTTP与HTTPS的区别,详细介绍[通俗易懂]
HTTP与HTTPS的区别,详细介绍[通俗易懂]
尽管HTTPS并非绝对安全,掌握根证书的机构、掌握加密算法的组织同样可以进行中间人形式的攻击,但HTTPS仍是现行架构下最安全的解决方案,他大幅增加了中间人攻击的成本
CA证书的申请及其使用过程
上面客户端使用HTTPS与服务器通信中使用到了CA认证,这里可能大家会问为什么不直接使用非对称加密的形式直接进行,首先这里先介绍下非对称加密。
非对称加密:客户端和服务端均拥有一个公有密匙和一个私有密匙。公有密匙可以对外暴露,而私有密匙只有自己可见。 使用公有密匙加密的消息,只有对应的私有密匙才能解开。反过来,使用私有密匙加密的消息,只有公有密匙才能解开。这样客户端在发送消息前,先用服务器的公匙对消息进行加密,服务器收到后再用自己的私匙进行解密。
HTTP与HTTPS的区别,详细介绍[通俗易懂]
非对称加密的优点:
-
非对称加密采用公有密匙和私有密匙的方式,解决了http中消息保密性问题,而且使得私有密匙泄露的风险降低。
-
因为公匙加密的消息只有对应的私匙才能解开,所以较大程度上保证了消息的来源性以及消息的准确性和完整性。
非对称加密的缺点:
-
非对称加密时需要使用到接收方的公匙对消息进行加密,但是公匙不是保密的,任何人都可以拿到,中间人也可以。那么中间人可以做两件事,第一件是中间人可以在客户端与服务器交换公匙的时候,将客户端的公匙替换成自己的。这样服务器拿到的公匙将不是客户端的,而是中间人的。服务器也无法判断公匙来源的正确性。第二件是中间人可以不替换公匙,但是他可以截获客户端发来的消息,然后篡改,然后用服务器的公匙加密再发往服务器,服务器将收到错误的消息。
-
非对称加密的性能相对对称加密来说会慢上几倍甚至几百倍,比较消耗系统资源。正是因为如此,https将两种加密结合了起来。
为了应对上面非对称加密带来的问题,我们就引入了数字证书与数字签名
HTTP与HTTPS的区别,详细介绍[通俗易懂]
CA 签发证书的过程,如上图左边部分:
-
⾸先 CA 会把持有者的公钥、⽤途、颁发者、有效时间等信息打成⼀个包,然后对这些信息进⾏ Hash 计算, 得到⼀个 Hash 值;
-
然后 CA 会使⽤⾃⼰的私钥将该 Hash 值加密,⽣成 Certificate Signature,也就是 CA 对证书做了签名;
-
最后将 Certificate Signature 添加在⽂件证书上,形成数字证书;
客户端校验服务端的数字证书的过程,如上图右边部分:
-
⾸先客户端会使⽤同样的 Hash 算法获取该证书的 Hash 值 H1;
-
通常浏览器和操作系统中集成了 CA 的公钥信息,浏览器收到证书后可以使⽤ CA 的公钥解密 Certificate Signature 内容,得到⼀个 Hash 值 H2 ;
-
最后⽐较 H1 和 H2,如果值相同,则为可信赖的证书,否则则认为证书不可信。
故CA认证介入我们的HTTPS连接的过程如下:
1、服务器拥有自己的私钥与公钥
2、服务器将公钥交给CA认证机构,请求给予一份数字证书
3、CA认证机构生成数字证书,并颁发给服务器
4、服务器将带有公钥信息的数字证书发给客户端
5、进入客户端生成对称密钥再进行对接的过程……
HTTP与HTTPS的区别,详细介绍[通俗易懂]
关于证书链
事实上,证书的验证过程中还存在⼀个证书信任链的问题,因为我们向 CA 申请的证书⼀般不是根证书签发的, ⽽是由中间证书签发的,⽐如百度的证书,从下图你可以看到,证书的层级有三级:
HTTP与HTTPS的区别,详细介绍[通俗易懂]
对于这种三级层级关系的证书的验证过程如下:
-
客户端收到 baidu.com 的证书后,发现这个证书的签发者不是根证书,就⽆法根据本地已有的根证书中的公钥去验证 baidu.com 证书是否可信。于是,客户端根据 baidu.com 证书中的签发者,找到该证书的颁发机构 是 “GlobalSign Organization Validation CA – SHA256 – G2”,然后向 CA 请求该中间证书。
-
请求到证书后发现 “GlobalSign Organization Validation CA – SHA256 – G2” 证书是由 “GlobalSign Root CA” 签发的,由于 “GlobalSign Root CA” 没有再上级签发机构,说明它是根证书,也就是⾃签证书。应⽤软件会 检查此证书有否已预载于根证书清单上,如果有,则可以利⽤根证书中的公钥去验证 “GlobalSign Organization Validation CA – SHA256 – G2” 证书,如果发现验证通过,就认为该中间证书是可信的。
-
“GlobalSign Organization Validation CA – SHA256 – G2” 证书被信任后,可以使⽤ “GlobalSign Organization Validation CA – SHA256 – G2” 证书中的公钥去验证 baidu.com 证书的可信性,如果验证通过,就可以信任 baidu.com 证书。
在这四个步骤中,最开始客户端只信任根证书 GlobalSign Root CA 证书的,然后 “GlobalSign Root CA” 证书信任 “GlobalSign Organization Validation CA – SHA256 – G2” 证书,⽽ “GlobalSign Organization Validation CA – SHA256 – G2” 证书⼜信任 baidu.com 证书,于是客户端也信任 baidu.com 证书。
总括来说,由于⽤户信任 GlobalSign,所以由 GlobalSign 所担保的 baidu.com 可以被信任,另外由于⽤户信任操 作系统或浏览器的软件商,所以由软件商预载了根证书的 GlobalSign 都可被信任。
SSL与TLS
SSL:(Secure Socket Layer,安全套接字层),位于可靠的面向连接的网络层协议和应用层协议之间的一种协议层。SSL通过互相认证、使用数字签名确保完整性、使用加密确保私密性,以实现客户端和服务器之间的安全通讯。该协议由两层组成:SSL记录协议和SSL握手协议。
TLS:(Transport Layer Security,传输层安全协议),用于两个应用程序之间提供保密性和数据完整性。该协议由两层组成:TLS记录协议和TLS握手协议。TLS是HTTP与TCP协议之间的一层,通常TLS发生在TCP三次握手之后,此时进行TLS四次握手,然后再进行HTTP通信
SSL/TLS历史
1994年,NetScape公司设计了SSL协议(Secure Sockets Layer)的1.0版,但是未发布。 1995年,NetScape公司发布SSL 2.0版,很快发现有严重漏洞。 1996年,SSL 3.0版问世,得到大规模应用。 1999年,互联网标准化组织ISOC接替NetScape公司,发布了SSL的升级版TLS 1.0版。 2006年和2008年,TLS进行了两次升级,分别为TLS 1.1版和TLS 1.2版。最新的变动是2011年TLS 1.2的修订版,在2018年也发布了TLS1.3版本。 TLS 1.0通常被标示为SSL 3.1,TLS 1.1为SSL 3.2,TLS 1.2为SSL 3.3。
目前应用的最广泛的 TLS 是 1.2,而之前的协议(TLS1.1/1.0、SSLv3/v2)都已经被认为是不安全的了
SSL/TLS协议的基本过程(TLS1.2)
-
客户端向服务器端索要并验证公钥。
-
双方协商生成”对话密钥”。
-
双方采用”对话密钥”进行加密通信。
上面过程的前两步,又称为”握手阶段”(handshake)
HTTP与HTTPS的区别,详细介绍[通俗易懂]
下面是我们本次模拟访问https://www.baidu.com时抓的包,大家可以看到这里面涉及的流程逻辑
HTTP与HTTPS的区别,详细介绍[通俗易懂]
1 客户端发出请求(ClientHello)
(1) 支持的协议版本,比如TLS 1.2版。 (2) 一个客户端生成的随机数1,稍后用于生成”对话密钥”。 (3) 【支持的密码套件】支持的加密方法,比如RSA公钥加密。 (4) 支持的压缩方法。 (5) 一个session id,标识是否复用服务器之前的tls连接(需要服务器支持)
2 服务器回应(SeverHello)
(1) 确认使用的加密通信协议版本,比如TLS 1.2版本。如果浏览器与服务器支持的版本不一致,服务器关闭加密通信。 (2) 一个服务器生成的随机数2,稍后用于生成”对话密钥”。 (3) 【确认密码套件】确认使用的加密方法,比如RSA公钥加密,此时带有公钥信息。 (4) 一个session id(若同意复用连接)
3 服务器回应(Server Certificate)
(1)服务器证书(该证书即包含服务器公钥)。
4 服务器回应(Server Key Exchange)
(1)服务器算法变更通知,服务端给客户端一个用于 ECDHE 算法的公钥
5 服务器回应(Server CertificateRequest)
(1)请求客户端证书,此案例中没有,一般银行等需要客户端也加密的才有,比如 U 盾。
6 服务器回应(Server ServerHelloDone)- 标识着 serverHello 这个握手过程结束了。
7 客户端回应(Client Certificate)- 回应客户端证书,本案例不涉及
8 客户端回应(ClientKeyExchange)
(1)客户端在验证完服务器的证书后,生成一个新的随机数(pre_master),通过服务器的公钥加密后发给服务器。
到这里,服务端与客户端将 生成最终通信的对称加密秘钥:master_secret 计算过程根据上面得到的三个随机数: 随机数 1(客户端随机数):在 ClientHello 消息里,由客户端生成的随机数1 随机数 2(服务端随机数):在 ServerHello 消息里,由服务端生成的随机数2 随机数 3(pre_master):通过秘钥交换算法 ECDHE 计算出的,我们叫它 pre_master。 最终的对称加密秘钥 master_secret,就是根据这三个随机数共同计算出来的。
9 客户端回应(Client CertificateVerif)
(1)验证客户端证书有效性,本次不涉及
10 客户端回应(Client ChangeCipherSpec)
(1)秘钥改变通知,此时客户端已经生成了 master_secret,之后的消息将都通过 master secret 来加密。
11 客户端回应(Client Finish)
(1) 客户端握手结束通知,表示客户端的握手阶段已经结束。这一项同时也是前面发送的所有内容的hash值,用来供服务器校验。
12 服务器回应(Server ChangeCipherSpec)
(1)秘钥改变通知,此时服务端也已经生成了 master_secret 了,后面的通信都用此值加密。
13 服务器回应(Server Finish)
(1)同 Client Finish,服务器端发送握手结束通知,同时会带上前面所发内容的hash签名到客户端,保证前面通信数据的正确性。
上述流程简易版(不包含验证客户端证书):
1. client –> server ClientHello 客户端生成随机数,并发送一组密码学套件供服务端选 2. server–> client ServerHello 服务端生成随机数,并从上述密码学套件组里选一个 3. server–> client Certificate 服务端发给客户端证书 4. server–> client ServerKeyExchange 服务端发给客户端秘钥交换算法所需的值 5. server–> client ServerHelloDone 服务端 hello 阶段结束 6. client –> server ClientKeyExchange 客户端发给服务端秘钥交换算法所需的值pre_master 7. client –> server ChangeCipherSpec 客户端告诉服务端,我已经知道秘钥了,之后的消息我就都加密发送了。 8. client –> server Finish 结束并验证 7. server –> server ChangeCipherSpec 服务端告诉客户端,我已经知道秘钥了,之后的消息我就都加密发送了。 9. server–> client Finish 结束并验证
图片流程
HTTP与HTTPS的区别,详细介绍[通俗易懂]
为什么一定要用三个随机数,来生成”会话密钥”呢?
“不管是客户端还是服务器,都需要随机数,这样生成的密钥才不会每次都一样。由于SSL协议中证书是静态的,因此十分有必要引入一种随机因素来保证协商出来的密钥的随机性。 对于RSA密钥交换算法来说,pre-master-key本身就是一个随机数,再加上hello消息中的随机数,三个随机数通过一个密钥导出器最终导出一个对称密钥。 pre master的存在在于SSL协议不信任每个主机都能产生完全随机的随机数,如果随机数不随机,那么pre master secret就有可能被猜出来,那么仅适用pre master secret作为密钥就不合适了,因此必须引入新的随机因素,那么客户端和服务器加上pre master secret三个随机数一同生成的密钥就不容易被猜出了,一个伪随机可能完全不随机,可是是三个伪随机就十分接近随机了,每增加一个自由度,随机性增加的可不是一。” 此外,如果前一步,服务器要求客户端证书,客户端会在这一步发送证书及相关信息。
以上介绍为TLS1.2的版本,其他TLS如1.0版本的流程会稍有不同,但大致逻辑是一样的。
TLS 1.2 转换流程逻辑也可以参考:26 | 信任始于握手:TLS1.2连接过程解析-极客时间
更新的 TLS 1.3也可以参考:27 | 更好更快的握手:TLS1.3特性解析-极客时间
TLS的主要目标是使SSL更安全,并使协议的规范更精确和完善。TLS 在SSL v3.0 的基础上,提供了以下增强内容:
1)更安全的MAC算法
2)更严密的警报
3)“灰色区域”规范的更明确的定义
TLS对于安全性的改进点如下(了解即可):
1)对于消息认证使用密钥散列法:TLS 使用“消息认证代码的密钥散列法”(HMAC),当记录在开放的网络(如因特网)上传送时,该代码确保记录不会被变更。SSLv3.0还提供键控消息认证,但HMAC比SSLv3.0使用的(消息认证代码)MAC 功能更安全。 2)增强的伪随机功能(PRF):PRF生成密钥数据。在TLS中,HMAC定义PRF。PRF使用两种散列算法保证其安全性。如果任一算法暴露了,只要第二种算法未暴露,则数据仍然是安全的。 3)改进的已完成消息验证:TLS和SSLv3.0都对两个端点提供已完成的消息,该消息认证交换的消息没有被变更。然而,TLS将此已完成消息基于PRF和HMAC值之上,这也比SSLv3.0更安全。 4)一致证书处理:与SSLv3.0不同,TLS试图指定必须在TLS之间实现交换的证书类型。 5)特定警报消息:TLS提供更多的特定和附加警报,以指示任一会话端点检测到的问题。TLS还对何时应该发送某些警报进行记录。