Bootstrap

autoware lidar_localizer包下的ndt_matching节点的学习

autoware lidar_localizer包下的ndt_matching节点的学习

激光雷达定位

自身定位对于自动驾驶汽车来说非常重要,常见的机器人定位方法有视觉slam方法(即时定位与地图构建),根据激光雷达实时扫描到的点云图构建地图,然后进行定位的方法。但是在自动驾驶具有高速移动,高安全性的要求下,对该方法的延时要求较高。而另一种定位方法位ndt(正态分布变换)地图匹配方法,则是在已有的高精度地图的基础上,将扫描到的点云地图进行高维变换,找出匹配度最高的转换关系,得到定位位置。autoware采用的是ndt地图匹配定位算法,其中能够选择是否需要gnss进行协同定位。

ndt算法:

先根据参考数据(reference scan)来构建多维变量的正态分布,如果变换参数能使得两幅激光数据匹配的很好,那么变换点在参考系中的概率密度将会很大。因此,可以考虑用优化的方法求出使得概率密度之和最大的变换参数,此时两幅激光点云数据将匹配的最好。

  1. 将参考点云(reference scan)所占的空间划分成体素,并计算每个网格的多维正态分布参数
  2. 将点云投票到各个格子
  3. 计算格子的正态分布PDF参数
  4. 将第二幅scan的每个点按转移矩阵T的变换
  5. 第二幅scan的点落于reference的哪个 格子,计算响应的概率分布函数
  6. 求所有点的最优值

ndt_matching

lidar_localizer节点的launch文件如图所示,其中主要查看ndt_matching.launch文件,该文件,描述了启动节点,以及相应的参数配置。
在这里插入图片描述
launch文件主要启动lidar_localizer功能包下的ndt_matching节点文件。参数设置主要包括method_type,use_gnss,use_odom,use_imu,imu_upside_down等。

<launch>
  <arg name="method_type" default="0" /> <!-- pcl_generic=0, pcl_anh=1, pcl_anh_gpu=2, pcl_openmp=3 -->
  <arg name="use_gnss" default="1" />
  <arg name="use_odom" default="false" />
  <arg name="use_imu" default="false" />
  <arg name="imu_upside_down" default="false" />
  <arg name="imu_topic" default="/imu_raw" />
  <arg name="queue_size" default="1" />
  <arg name="offset" default="linear" />
  <arg name="get_height" default="false" />
  <arg name="use_local_transform" default="false" />
  <arg name="sync" default="false" />
  <arg name="output_log_data" default="false" />

  <node pkg="lidar_localizer" type="ndt_matching" name="ndt_matching" output="log">
    <param name="method_type" value="$(arg method_type)" />
    <param name="use_gnss" value="$(arg use_gnss)" />
    <param name="use_odom" value="$(arg use_odom)" />
    <param name="use_imu" value="$(arg use_imu)" />
    <param name="imu_upside_down" value="$(arg imu_upside_down)" />
    <param name="imu_topic" value="$(arg imu_topic)" />
    <param name="queue_size" value="$(arg queue_size)" />
    <param name="offset" value="$(arg offset)" />
    <param name="get_height" value="$(arg get_height)" />
    <param name="use_local_transform" value="$(arg use_local_transform)" />
    <param name="output_log_data" value="$(arg output_log_data)" />
    <remap from="/points_raw" to="/sync_drivers/points_raw" if="$(arg sync)" />
  </node>
</launch>

主要分析ndt_matching.cpp节点。首先看main函数,初始化并命名节点ndt_matching,然后初始化线程互斥锁,为后续多线程操作做准备。接着初始化共有句柄nh,以及私有句柄private_nh。

int main(int argc, char** argv)
{
  ros::init(argc, argv, "ndt_matching");
  pthread_mutex_init(&mutex, NULL);

  ros::NodeHandle nh;
  ros::NodeHandle private_nh("~");
  node_status_publisher_ptr_ = std::make_shared<autoware_health_checker::NodeStatusPublisher>(nh,private_nh);//声明节点状态的智能指针
  node_status_publisher_ptr_->ENABLE();
  node_status_publisher_ptr_->NODE_ACTIVATE();

然后设置了日志文件的名称

private_nh.getParam("output_log_data", _output_log_data);
  if(_output_log_data)
  {
    char buffer[80];
    std::time_t now = std::time(NULL);
    std::tm* pnow = std::localtime(&now);
    std::strftime(buffer, 80, "%Y%m%d_%H%M%S", pnow);
    std::string directory_name = "/tmp/Autoware/log/ndt_matching";
    filename = directory_name + "/" + std::string(buffer) + ".csv";
    boost::filesystem::create_directories(boost::filesystem::path(directory_name));
    ofs.open(filename.c_str(), std::ios::app);
  }

tl_btol表示点之间的平移关系,rot_x_btol描述的是描述关于x轴的旋转关系,_tf_roll为绕x轴的旋转角度,rot_y_btol,rot_z_btol同样表示y轴预z轴的旋转角度。tf_btol为位姿变换关系静态变换矩阵,由坐标*旋转来表示。

  Eigen::Translation3f tl_btol(_tf_x, _tf_y, _tf_z);                 // tl: translation 平移关系
  Eigen::AngleAxisf rot_x_btol(_tf_roll, Eigen::Vector3f::UnitX());  // rot: rotation 描述关于x轴的旋转关系,_tf_roll为绕x轴的旋转角度
  Eigen::AngleAxisf rot_y_btol(_tf_pitch, Eigen::Vector3f::UnitY());
  Eigen::AngleAxisf rot_z_btol(_tf_yaw, Eigen::Vector3f::UnitZ());
  tf_btol = (tl_btol * rot_z_btol * rot_y_btol * rot_x_btol).matrix();

发布车辆,惯导,例程及ndt预测位置。

predict_pose_pub = nh.advertise<geometry_msgs::PoseStamped>("/predict_pose", 10);//发布预测位资的消息
  predict_pose_imu_pub = nh.advertise<geometry_msgs::PoseStamped>("/predict_pose_imu", 10);
  predict_pose_odom_pub = nh.advertise<geometry_msgs::PoseStamped>("/predict_pose_odom", 10);
  predict_pose_imu_odom_pub = nh.advertise<geometry_msgs::PoseStamped>("/predict_pose_imu_odom", 10);
  ndt_pose_pub = nh.advertise<geometry_msgs::PoseStamped>("/ndt_pose", 10);

通过回调函数订阅参数,初始位置,过滤点集等消息。

  ros::Subscriber param_sub = nh.subscribe("config/ndt", 10, param_callback);
  ros::Subscriber gnss_sub = nh.subscribe("gnss_pose", 10, gnss_callback);
  //  ros::Subscriber map_sub = nh.subscribe("points_map", 1, map_callback);
  ros::Subscriber initialpose_sub = nh.subscribe("initialpose", 10, initialpose_callback);
  ros::Subscriber points_sub = nh.subscribe("filtered_points", _queue_size, points_callback);
  ros::Subscriber odom_sub = nh.subscribe("/vehicle/odom", _queue_size * 10, odom_callback);
  ros::Subscriber imu_sub = nh.subscribe(_imu_topic.c_str(), _queue_size * 10, imu_callback);

然后看convertPoseIntoRelativeCoordinate这个函数,它返回的是位置,主要是将位置坐标转换到参考坐标系。首先声明存储目标姿态的四元数。四元数是ros里用来表示3D刚体物体姿态。无人汽车在空间中的位资主要有自身的坐标位置(x,y,z)以及绕着参考坐标系坐标轴的旋转角度。通常描述旋转量有欧拉角,还有四元数,而欧拉角表示的是刚体绕着坐标轴的旋转角度,欧拉角的优点具有直观性,但是采用欧拉角会使得描述刚体处于万向锁的情况,所以欧拉角适用于验证。而四元数类似于复数,其具有一个实部和三个虚部,四元数可以表示空间中任意旋转。

通过调用setRPY函数能够按照固定轴xyz来设置旋转角度,并且存储表示目标位置的向量,然后作为参数传入表示目标位资的target_tf对象的构造函数。

static pose convertPoseIntoRelativeCoordinate(const pose &target_pose, const pose &reference_pose)//将位置转换到相对坐标系
{
    tf::Quaternion target_q;//目标的四元数
    target_q.setRPY(target_pose.roll, target_pose.pitch, target_pose.yaw);//按照固定轴来设置旋转角度xyz轴下
    tf::Vector3 target_v(target_pose.x, target_pose.y, target_pose.z);//目标位置向量
    tf::Transform target_tf(target_q, target_v);//声明存放目标位资转换信息(平移+旋转)的对象,并初始化构造函数。

    tf::Quaternion reference_q;//参照四元数
    reference_q.setRPY(reference_pose.roll, reference_pose.pitch, reference_pose.yaw);//设置xyz绕轴转动角度
    tf::Vector3 reference_v(reference_pose.x, reference_pose.y, reference_pose.z);//设置参考位置向量
    tf::Transform reference_tf(reference_q, reference_v);

    tf::Transform trans_target_tf = reference_tf.inverse() * target_tf;//inverse返回变换的逆矩阵如

    pose trans_target_pose;//训练目标的坐标
    trans_target_pose.x = trans_target_tf.getOrigin().getX();//返回x值
    trans_target_pose.y = trans_target_tf.getOrigin().getY();
    trans_target_pose.z = trans_target_tf.getOrigin().getZ();
    tf::Matrix3x3 tmp_m(trans_target_tf.getRotation());
    tmp_m.getRPY(trans_target_pose.roll, trans_target_pose.pitch, trans_target_pose.yaw);

    return trans_target_pose;
}//返回转换的目标位置

参数订阅者param_sub通过config/ndt话题,当接收到配置信息的时候调用回调函数param_callback来进行参数配置,其中主要配置的有初始化位置。以及是否使用gnss时参数配置有所不同。


 static void param_callback(const autoware_config_msgs::ConfigNDT::ConstPtr& input)//参数回调函数完成参数的初始化
{
  if (_use_gnss != input->init_pos_gnss)
  {
    init_pos_set = 0;
  }
  else if (_use_gnss == 0 &&
           (initial_pose.x != input->x || initial_pose.y != input->y || initial_pose.z != input->z ||
            initial_pose.roll != input->roll || initial_pose.pitch != input->pitch || initial_pose.yaw != input->yaw))
  {
    init_pos_set = 0;
  }

  _use_gnss = input->init_pos_gnss;

  // Setting parameters

位姿初始化以及速度的初始化。

 localizer_pose.x = initial_pose.x;
    localizer_pose.y = initial_pose.y;
    localizer_pose.z = initial_pose.z;
    localizer_pose.roll = initial_pose.roll;
    localizer_pose.pitch = initial_pose.pitch;
    localizer_pose.yaw = initial_pose.yaw;

    previous_pose.x = initial_pose.x;
    previous_pose.y = initial_pose.y;
    previous_pose.z = initial_pose.z;
    previous_pose.roll = initial_pose.roll;
    previous_pose.pitch = initial_pose.pitch;
    previous_pose.yaw = initial_pose.yaw;

    current_pose.x = initial_pose.x;
    current_pose.y = initial_pose.y;
    current_pose.z = initial_pose.z;
    current_pose.roll = initial_pose.roll;
    current_pose.pitch = initial_pose.pitch;
    current_pose.yaw = initial_pose.yaw;

    current_velocity = 0;
    current_velocity_x = 0;
    current_velocity_y = 0;
    current_velocity_z = 0;
    angular_velocity = 0;

    current_pose_imu.x = 0;
    current_pose_imu.y = 0;
    current_pose_imu.z = 0;
    current_pose_imu.roll = 0;
    current_pose_imu.pitch = 0;
    current_pose_imu.yaw = 0;

    current_velocity_imu_x = current_velocity_x;
    current_velocity_imu_y = current_velocity_y;
    current_velocity_imu_z = current_velocity_z;
    init_pos_set = 1;

ros::Subscriber gnss_sub = nh.subscribe(“gnss_pose”, 10, gnss_callback)此处通过gnss_pose话题订阅惯导的位置信息。当接收到消息之后,惯导回调函数获取当前惯导的gps位置和位姿数据,如果使用gnss,并且初始位置设置为0或者fitness_score大于或等于500()时,则进行gnss重定位,即将位置更新为当前的位姿,并计算当前位置与先前位置的偏差。

static void gnss_callback(const geometry_msgs::PoseStamped::ConstPtr& input)
{
  tf::Quaternion gnss_q(input->pose.orientation.x, input->pose.orientation.y, input->pose.orientation.z,
                        input->pose.orientation.w);
  tf::Matrix3x3 gnss_m(gnss_q);//讲位置四元数转换为旋转矩阵

  pose current_gnss_pose;
  current_gnss_pose.x = input->pose.position.x;
  current_gnss_pose.y = input->pose.position.y;
  current_gnss_pose.z = input->pose.position.z;
  gnss_m.getRPY(current_gnss_pose.roll, current_gnss_pose.pitch, current_gnss_pose.yaw);//得到当前的RPY姿态角度

  static pose previous_gnss_pose = current_gnss_pose;
  ros::Time current_gnss_time = input->header.stamp;//记录当前gnss的时间
  static ros::Time previous_gnss_time = current_gnss_time;

  if ((_use_gnss == 1 && init_pos_set == 0) || fitness_score >= 500.0)//
  {
    previous_pose.x = previous_gnss_pose.x;
    previous_pose.y = previous_gnss_pose.y;
    previous_pose.z = previous_gnss_pose.z;
    previous_pose.roll = previous_gnss_pose.roll;
    previous_pose.pitch = previous_gnss_pose.pitch;
    previous_pose.yaw = previous_gnss_pose.yaw;

    current_pose.x = current_gnss_pose.x;
    current_pose.y = current_gnss_pose.y;
    current_pose.z = current_gnss_pose.z;
    current_pose.roll = current_gnss_pose.roll;
    current_pose.pitch = current_gnss_pose.pitch;
    current_pose.yaw = current_gnss_pose.yaw;

    current_pose_imu = current_pose_odom = current_pose_imu_odom = current_pose;

    diff_x = current_pose.x - previous_pose.x;
    diff_y = current_pose.y - previous_pose.y;
    diff_z = current_pose.z - previous_pose.z;
    diff_yaw = current_pose.yaw - previous_pose.yaw;
    diff = sqrt(diff_x * diff_x + diff_y * diff_y + diff_z * diff_z);

    const pose trans_current_pose = convertPoseIntoRelativeCoordinate(current_pose, previous_pose);

    const double diff_time = (current_gnss_time - previous_gnss_time).toSec();
    current_velocity = (diff_time > 0) ? (diff / diff_time) : 0;
    current_velocity =  (trans_current_pose.x >= 0) ? current_velocity : -current_velocity;
    current_velocity_x = (diff_time > 0) ? (diff_x / diff_time) : 0;
    current_velocity_y = (diff_time > 0) ? (diff_y / diff_time) : 0;
    current_velocity_z = (diff_time > 0) ? (diff_z / diff_time) : 0;
    angular_velocity = (diff_time > 0) ? (diff_yaw / diff_time) : 0;

    current_accel = 0.0;
    current_accel_x = 0.0;
    current_accel_y = 0.0;
    current_accel_z = 0.0;

    init_pos_set = 1;
  }

然后是points_callback匹配模块

static void points_callback(const sensor_msgs::PointCloud2::ConstPtr& input)
{
  if (map_loaded == 1 && init_pos_set == 1) //map_loaded和init_pos_set默认都为0,收到地图后map_loaded为1,参数初始化或者设置位置之后init_pos_set为1
  {
    matching_start = std::chrono::system_clock::now();//获取当前系统时间
 
    static tf::TransformBroadcaster br;//tf广播
    tf::Transform transform;
    /*
    predict 速度积分预估
    previous 上一时刻
    ndt 正态分布匹配出来的base_link位置
    current 当前时刻最终定位
    localizer 正态分布匹配出来的lidar位置
    */
    tf::Quaternion predict_q, ndt_q, current_q, localizer_q;
 
    pcl::PointXYZ p;
    pcl::PointCloud<pcl::PointXYZ> filtered_scan;
 
    ros::Time current_scan_time = input->header.stamp;
    static ros::Time previous_scan_time = current_scan_time;
 
    pcl::fromROSMsg(*input, filtered_scan);
    pcl::PointCloud<pcl::PointXYZ>::Ptr filtered_scan_ptr(new pcl::PointCloud<pcl::PointXYZ>(filtered_scan));
    int scan_points_num = filtered_scan_ptr->size();
    //初始化矩阵
    Eigen::Matrix4f t(Eigen::Matrix4f::Identity());   // base_link
    Eigen::Matrix4f t2(Eigen::Matrix4f::Identity());  // localizer
 
    std::chrono::time_point<std::chrono::system_clock> align_start, align_end, getFitnessScore_start,
        getFitnessScore_end;
    static double align_time, getFitnessScore_time = 0.0;
 
    pthread_mutex_lock(&mutex);
    //加载配准点云
    if (_method_type == MethodType::PCL_GENERIC)
      ndt.setInputSource(filtered_scan_ptr);
    else if (_method_type == MethodType::PCL_ANH)
      anh_ndt.setInputSource(filtered_scan_ptr);
#ifdef CUDA_FOUND
    else if (_method_type == MethodType::PCL_ANH_GPU)
      anh_gpu_ndt_ptr->setInputSource(filtered_scan_ptr);
#endif
#ifdef USE_PCL_OPENMP
    else if (_method_type == MethodType::PCL_OPENMP)
      omp_ndt.setInputSource(filtered_scan_ptr);
#endif
 
    // Guess the initial gross estimation of the transformation
    // 当前帧的雷达时间和上一帧的雷达时间间隔
    double diff_time = (current_scan_time - previous_scan_time).toSec();
    //速度积分,上一时刻速度*间隔时间
    if (_offset == "linear")
    {
      offset_x = current_velocity_x * diff_time;
      offset_y = current_velocity_y * diff_time;
      offset_z = current_velocity_z * diff_time;
      offset_yaw = angular_velocity * diff_time;
    }
    else if (_offset == "quadratic")
    {
      offset_x = (current_velocity_x + current_accel_x * diff_time) * diff_time;
      offset_y = (current_velocity_y + current_accel_y * diff_time) * diff_time;
      offset_z = current_velocity_z * diff_time;
      offset_yaw = angular_velocity * diff_time;
    }
    else if (_offset == "zero")
    {
      offset_x = 0.0;
      offset_y = 0.0;
      offset_z = 0.0;
      offset_yaw = 0.0;
    }
 
    predict_pose.x = previous_pose.x + offset_x;
    predict_pose.y = previous_pose.y + offset_y;
    predict_pose.z = previous_pose.z + offset_z;
    predict_pose.roll = previous_pose.roll;
    predict_pose.pitch = previous_pose.pitch;
    predict_pose.yaw = previous_pose.yaw + offset_yaw;
 
    if (_use_imu == true && _use_odom == true)
      imu_odom_calc(current_scan_time);
    if (_use_imu == true && _use_odom == false)
      imu_calc(current_scan_time);
    if (_use_imu == false && _use_odom == true)
      odom_calc(current_scan_time);
 
    pose predict_pose_for_ndt;
    if (_use_imu == true && _use_odom == true)
      predict_pose_for_ndt = predict_pose_imu_odom;
    else if (_use_imu == true && _use_odom == false)
      predict_pose_for_ndt = predict_pose_imu;
    else if (_use_imu == false && _use_odom == true)
      predict_pose_for_ndt = predict_pose_odom;
    else
      predict_pose_for_ndt = predict_pose;//最终选择
    //提供了点云配准变换,由之前的(x,y,z,roll,pitch,yaw)求出旋转矩阵
    Eigen::Translation3f init_translation(predict_pose_for_ndt.x, predict_pose_for_ndt.y, predict_pose_for_ndt.z);
    Eigen::AngleAxisf init_rotation_x(predict_pose_for_ndt.roll, Eigen::Vector3f::UnitX());
    Eigen::AngleAxisf init_rotation_y(predict_pose_for_ndt.pitch, Eigen::Vector3f::UnitY());
    Eigen::AngleAxisf init_rotation_z(predict_pose_for_ndt.yaw, Eigen::Vector3f::UnitZ());
    Eigen::Matrix4f init_guess = (init_translation * init_rotation_z * init_rotation_y * init_rotation_x) * tf_btol;
 
    pcl::PointCloud<pcl::PointXYZ>::Ptr output_cloud(new pcl::PointCloud<pcl::PointXYZ>);
 
    if (_method_type == MethodType::PCL_GENERIC)//默认_method_type为0
    {
      align_start = std::chrono::system_clock::now();
      ndt.align(*output_cloud, init_guess);//进行配准打分和输出
      align_end = std::chrono::system_clock::now();
 
      has_converged = ndt.hasConverged();//正态分布收敛值
 
      t = ndt.getFinalTransformation();//得出的变换矩阵
      iteration = ndt.getFinalNumIteration();//获取计算对齐所需的迭代次数
 
      getFitnessScore_start = std::chrono::system_clock::now();
      fitness_score = ndt.getFitnessScore();//匹配分数
      getFitnessScore_end = std::chrono::system_clock::now();
 
      trans_probability = ndt.getTransformationProbability();//转化概率
    }
    else if (_method_type == MethodType::PCL_ANH)
    {
      align_start = std::chrono::system_clock::now();
      anh_ndt.align(init_guess);
      align_end = std::chrono::system_clock::now();
 
      has_converged = anh_ndt.hasConverged();
 
      t = anh_ndt.getFinalTransformation();
      iteration = anh_ndt.getFinalNumIteration();
 
      getFitnessScore_start = std::chrono::system_clock::now();
      fitness_score = anh_ndt.getFitnessScore();
      getFitnessScore_end = std::chrono::system_clock::now();
 
      trans_probability = anh_ndt.getTransformationProbability();
    }
#ifdef CUDA_FOUND
    else if (_method_type == MethodType::PCL_ANH_GPU)
    {
      align_start = std::chrono::system_clock::now();
      anh_gpu_ndt_ptr->align(init_guess);
      align_end = std::chrono::system_clock::now();
 
      has_converged = anh_gpu_ndt_ptr->hasConverged();
 
      t = anh_gpu_ndt_ptr->getFinalTransformation();
      iteration = anh_gpu_ndt_ptr->getFinalNumIteration();
 
      getFitnessScore_start = std::chrono::system_clock::now();
      fitness_score = anh_gpu_ndt_ptr->getFitnessScore();
      getFitnessScore_end = std::chrono::system_clock::now();
 
      trans_probability = anh_gpu_ndt_ptr->getTransformationProbability();
    }
#endif
#ifdef USE_PCL_OPENMP
    else if (_method_type == MethodType::PCL_OPENMP)
    {
      align_start = std::chrono::system_clock::now();
      omp_ndt.align(*output_cloud, init_guess);
      align_end = std::chrono::system_clock::now();
 
      has_converged = omp_ndt.hasConverged();
 
      t = omp_ndt.getFinalTransformation();
      iteration = omp_ndt.getFinalNumIteration();
 
      getFitnessScore_start = std::chrono::system_clock::now();
      fitness_score = omp_ndt.getFitnessScore();
      getFitnessScore_end = std::chrono::system_clock::now();
 
      trans_probability = omp_ndt.getTransformationProbability();
    }
#endif
    //配准打分的时间
    align_time = std::chrono::duration_cast<std::chrono::microseconds>(align_end - align_start).count() / 1000.0;
 
    t2 = t * tf_btol.inverse();//tf_btol.inverse():机器人到雷达的静态变换矩阵   t:雷达到点云的变换矩阵
    //获取匹配分数的时间
    getFitnessScore_time =
        std::chrono::duration_cast<std::chrono::microseconds>(getFitnessScore_end - getFitnessScore_start).count() /
        1000.0;
 
    pthread_mutex_unlock(&mutex);
 
    tf::Matrix3x3 mat_l;  // localizer
    mat_l.setValue(static_cast<double>(t(0, 0)), static_cast<double>(t(0, 1)), static_cast<double>(t(0, 2)),
                   static_cast<double>(t(1, 0)), static_cast<double>(t(1, 1)), static_cast<double>(t(1, 2)),
                   static_cast<double>(t(2, 0)), static_cast<double>(t(2, 1)), static_cast<double>(t(2, 2)));
 
    // Update localizer_pose
    localizer_pose.x = t(0, 3);
    localizer_pose.y = t(1, 3);
    localizer_pose.z = t(2, 3);
    mat_l.getRPY(localizer_pose.roll, localizer_pose.pitch, localizer_pose.yaw, 1);
 
    tf::Matrix3x3 mat_b;  // base_link
    mat_b.setValue(static_cast<double>(t2(0, 0)), static_cast<double>(t2(0, 1)), static_cast<double>(t2(0, 2)),
                   static_cast<double>(t2(1, 0)), static_cast<double>(t2(1, 1)), static_cast<double>(t2(1, 2)),
                   static_cast<double>(t2(2, 0)), static_cast<double>(t2(2, 1)), static_cast<double>(t2(2, 2)));
 
    // Update ndt_pose
    ndt_pose.x = t2(0, 3);
    ndt_pose.y = t2(1, 3);
    ndt_pose.z = t2(2, 3);
    mat_b.getRPY(ndt_pose.roll, ndt_pose.pitch, ndt_pose.yaw, 1);
 
    // Calculate the difference between ndt_pose and predict_pose
    // 计算ndt_pose和predict_pose之间的差异
    //predict_pose_for_ndt为这次位置的速度积分值
    predict_pose_error = sqrt((ndt_pose.x - predict_pose_for_ndt.x) * (ndt_pose.x - predict_pose_for_ndt.x) +
                              (ndt_pose.y - predict_pose_for_ndt.y) * (ndt_pose.y - predict_pose_for_ndt.y) +
                              (ndt_pose.z - predict_pose_for_ndt.z) * (ndt_pose.z - predict_pose_for_ndt.z));
 
    if (predict_pose_error <= PREDICT_POSE_THRESHOLD)//PREDICT_POSE_THRESHOLD默认值为0.5
    {
      use_predict_pose = 0;
    }
    else
    {
      use_predict_pose = 1;
    }
    use_predict_pose = 0;
 
    if (use_predict_pose == 0)//如果为0,说明速度积分值和计算匹配值相近,则说明定位没有跳跃,设当前位置为计算匹配值
    {
      current_pose.x = ndt_pose.x;
      current_pose.y = ndt_pose.y;
      current_pose.z = ndt_pose.z;
      current_pose.roll = ndt_pose.roll;
      current_pose.pitch = ndt_pose.pitch;
      current_pose.yaw = ndt_pose.yaw;
    }
    else//如果为1,说明预估值和计算匹配值相差教导,则说明定位出现了跳跃,设当前位置为速度积分值
    {
      current_pose.x = predict_pose_for_ndt.x;
      current_pose.y = predict_pose_for_ndt.y;
      current_pose.z = predict_pose_for_ndt.z;
      current_pose.roll = predict_pose_for_ndt.roll;
      current_pose.pitch = predict_pose_for_ndt.pitch;
      current_pose.yaw = predict_pose_for_ndt.yaw;
    }
 
    // Compute the velocity and acceleration
    //计算速度和加速度
    //位置差异 = 当前位置 - 上一位置
    diff_x = current_pose.x - previous_pose.x;
    diff_y = current_pose.y - previous_pose.y;
    diff_z = current_pose.z - previous_pose.z;
    diff_yaw = calcDiffForRadian(current_pose.yaw, previous_pose.yaw);
    diff = sqrt(diff_x * diff_x + diff_y * diff_y + diff_z * diff_z);
    //当前速度 = 位置差异/时间间隔
    current_velocity = (diff_time > 0) ? (diff / diff_time) : 0;
    current_velocity_x = (diff_time > 0) ? (diff_x / diff_time) : 0;
    current_velocity_y = (diff_time > 0) ? (diff_y / diff_time) : 0;
    current_velocity_z = (diff_time > 0) ? (diff_z / diff_time) : 0;
    angular_velocity = (diff_time > 0) ? (diff_yaw / diff_time) : 0;
 
    current_pose_imu.x = current_pose.x;
    current_pose_imu.y = current_pose.y;
    current_pose_imu.z = current_pose.z;
    current_pose_imu.roll = current_pose.roll;
    current_pose_imu.pitch = current_pose.pitch;
    current_pose_imu.yaw = current_pose.yaw;
 
    current_velocity_imu_x = current_velocity_x;
    current_velocity_imu_y = current_velocity_y;
    current_velocity_imu_z = current_velocity_z;
 
    current_pose_odom.x = current_pose.x;
    current_pose_odom.y = current_pose.y;
    current_pose_odom.z = current_pose.z;
    current_pose_odom.roll = current_pose.roll;
    current_pose_odom.pitch = current_pose.pitch;
    current_pose_odom.yaw = current_pose.yaw;
 
    current_pose_imu_odom.x = current_pose.x;
    current_pose_imu_odom.y = current_pose.y;
    current_pose_imu_odom.z = current_pose.z;
    current_pose_imu_odom.roll = current_pose.roll;
    current_pose_imu_odom.pitch = current_pose.pitch;
    current_pose_imu_odom.yaw = current_pose.yaw;
    //当前速度平滑值 = (当前速度+上一时间速度+上上一时间速度)/3.0
    current_velocity_smooth = (current_velocity + previous_velocity + previous_previous_velocity) / 3.0;
    if (current_velocity_smooth < 0.2)
    {
      current_velocity_smooth = 0.0;
    }
    //当前加速度 = (当前速度 - 上一时刻速度)/时间间隔
    current_accel = (diff_time > 0) ? ((current_velocity - previous_velocity) / diff_time) : 0;
    current_accel_x = (diff_time > 0) ? ((current_velocity_x - previous_velocity_x) / diff_time) : 0;
    current_accel_y = (diff_time > 0) ? ((current_velocity_y - previous_velocity_y) / diff_time) : 0;
    current_accel_z = (diff_time > 0) ? ((current_velocity_z - previous_velocity_z) / diff_time) : 0;
    //估计速度m/s,km/h
    estimated_vel_mps.data = current_velocity;
    estimated_vel_kmph.data = current_velocity * 3.6;
 
    estimated_vel_mps_pub.publish(estimated_vel_mps);
    estimated_vel_kmph_pub.publish(estimated_vel_kmph);
 
    // Set values for publishing pose
    //速度积分预估值的姿态
    predict_q.setRPY(predict_pose.roll, predict_pose.pitch, predict_pose.yaw);
    if (_use_local_transform == true)
    {
      tf::Vector3 v(predict_pose.x, predict_pose.y, predict_pose.z);
      tf::Transform transform(predict_q, v);
      predict_pose_msg.header.frame_id = "/map";
      predict_pose_msg.header.stamp = current_scan_time;
      predict_pose_msg.pose.position.x = (local_transform * transform).getOrigin().getX();
      predict_pose_msg.pose.position.y = (local_transform * transform).getOrigin().getY();
      predict_pose_msg.pose.position.z = (local_transform * transform).getOrigin().getZ();
      predict_pose_msg.pose.orientation.x = (local_transform * transform).getRotation().x();
      predict_pose_msg.pose.orientation.y = (local_transform * transform).getRotation().y();
      predict_pose_msg.pose.orientation.z = (local_transform * transform).getRotation().z();
      predict_pose_msg.pose.orientation.w = (local_transform * transform).getRotation().w();
    }
    else //默认为false
    {
      predict_pose_msg.header.frame_id = "/map";
      predict_pose_msg.header.stamp = current_scan_time;
      predict_pose_msg.pose.position.x = predict_pose.x;
      predict_pose_msg.pose.position.y = predict_pose.y;
      predict_pose_msg.pose.position.z = predict_pose.z;
      predict_pose_msg.pose.orientation.x = predict_q.x();
      predict_pose_msg.pose.orientation.y = predict_q.y();
      predict_pose_msg.pose.orientation.z = predict_q.z();
      predict_pose_msg.pose.orientation.w = predict_q.w();
    }
 
    tf::Quaternion predict_q_imu;
    predict_q_imu.setRPY(predict_pose_imu.roll, predict_pose_imu.pitch, predict_pose_imu.yaw);
    predict_pose_imu_msg.header.frame_id = "map";
    predict_pose_imu_msg.header.stamp = input->header.stamp;
    predict_pose_imu_msg.pose.position.x = predict_pose_imu.x;
    predict_pose_imu_msg.pose.position.y = predict_pose_imu.y;
    predict_pose_imu_msg.pose.position.z = predict_pose_imu.z;
    predict_pose_imu_msg.pose.orientation.x = predict_q_imu.x();
    predict_pose_imu_msg.pose.orientation.y = predict_q_imu.y();
    predict_pose_imu_msg.pose.orientation.z = predict_q_imu.z();
    predict_pose_imu_msg.pose.orientation.w = predict_q_imu.w();
    predict_pose_imu_pub.publish(predict_pose_imu_msg);
 
    tf::Quaternion predict_q_odom;
    predict_q_odom.setRPY(predict_pose_odom.roll, predict_pose_odom.pitch, predict_pose_odom.yaw);
    predict_pose_odom_msg.header.frame_id = "map";
    predict_pose_odom_msg.header.stamp = input->header.stamp;
    predict_pose_odom_msg.pose.position.x = predict_pose_odom.x;
    predict_pose_odom_msg.pose.position.y = predict_pose_odom.y;
    predict_pose_odom_msg.pose.position.z = predict_pose_odom.z;
    predict_pose_odom_msg.pose.orientation.x = predict_q_odom.x();
    predict_pose_odom_msg.pose.orientation.y = predict_q_odom.y();
    predict_pose_odom_msg.pose.orientation.z = predict_q_odom.z();
    predict_pose_odom_msg.pose.orientation.w = predict_q_odom.w();
    predict_pose_odom_pub.publish(predict_pose_odom_msg);
 
    tf::Quaternion predict_q_imu_odom;
    predict_q_imu_odom.setRPY(predict_pose_imu_odom.roll, predict_pose_imu_odom.pitch, predict_pose_imu_odom.yaw);
    predict_pose_imu_odom_msg.header.frame_id = "map";
    predict_pose_imu_odom_msg.header.stamp = input->header.stamp;
    predict_pose_imu_odom_msg.pose.position.x = predict_pose_imu_odom.x;
    predict_pose_imu_odom_msg.pose.position.y = predict_pose_imu_odom.y;
    predict_pose_imu_odom_msg.pose.position.z = predict_pose_imu_odom.z;
    predict_pose_imu_odom_msg.pose.orientation.x = predict_q_imu_odom.x();
    predict_pose_imu_odom_msg.pose.orientation.y = predict_q_imu_odom.y();
    predict_pose_imu_odom_msg.pose.orientation.z = predict_q_imu_odom.z();
    predict_pose_imu_odom_msg.pose.orientation.w = predict_q_imu_odom.w();
    predict_pose_imu_odom_pub.publish(predict_pose_imu_odom_msg);
 
    //ndt_pose 计算出来的当前位置信息
    ndt_q.setRPY(ndt_pose.roll, ndt_pose.pitch, ndt_pose.yaw);
    if (_use_local_transform == true)
    {
      tf::Vector3 v(ndt_pose.x, ndt_pose.y, ndt_pose.z);
      tf::Transform transform(ndt_q, v);
      ndt_pose_msg.header.frame_id = "/map";
      ndt_pose_msg.header.stamp = current_scan_time;
      ndt_pose_msg.pose.position.x = (local_transform * transform).getOrigin().getX();
      ndt_pose_msg.pose.position.y = (local_transform * transform).getOrigin().getY();
      ndt_pose_msg.pose.position.z = (local_transform * transform).getOrigin().getZ();
      ndt_pose_msg.pose.orientation.x = (local_transform * transform).getRotation().x();
      ndt_pose_msg.pose.orientation.y = (local_transform * transform).getRotation().y();
      ndt_pose_msg.pose.orientation.z = (local_transform * transform).getRotation().z();
      ndt_pose_msg.pose.orientation.w = (local_transform * transform).getRotation().w();
    }
    else //默认值
    {
      ndt_pose_msg.header.frame_id = "/map";
      ndt_pose_msg.header.stamp = current_scan_time;
      ndt_pose_msg.pose.position.x = ndt_pose.x;
      ndt_pose_msg.pose.position.y = ndt_pose.y;
      ndt_pose_msg.pose.position.z = ndt_pose.z;
      ndt_pose_msg.pose.orientation.x = ndt_q.x();
      ndt_pose_msg.pose.orientation.y = ndt_q.y();
      ndt_pose_msg.pose.orientation.z = ndt_q.z();
      ndt_pose_msg.pose.orientation.w = ndt_q.w();
    }
    //current_pose 当前判断出来的位置,排除了异常匹配的更精准的位置
    current_q.setRPY(current_pose.roll, current_pose.pitch, current_pose.yaw);
    // current_pose is published by vel_pose_mux
    /*
    current_pose_msg.header.frame_id = "/map";
    current_pose_msg.header.stamp = current_scan_time;
    current_pose_msg.pose.position.x = current_pose.x;
    current_pose_msg.pose.position.y = current_pose.y;
    current_pose_msg.pose.position.z = current_pose.z;
    current_pose_msg.pose.orientation.x = current_q.x();
    current_pose_msg.pose.orientation.y = current_q.y();
    current_pose_msg.pose.orientation.z = current_q.z();
    current_pose_msg.pose.orientation.w = current_q.w();
    */
    //localizer_pose 当前雷达的位置
    localizer_q.setRPY(localizer_pose.roll, localizer_pose.pitch, localizer_pose.yaw);
    if (_use_local_transform == true)
    {
      tf::Vector3 v(localizer_pose.x, localizer_pose.y, localizer_pose.z);
      tf::Transform transform(localizer_q, v);
      localizer_pose_msg.header.frame_id = "/map";
      localizer_pose_msg.header.stamp = current_scan_time;
      localizer_pose_msg.pose.position.x = (local_transform * transform).getOrigin().getX();
      localizer_pose_msg.pose.position.y = (local_transform * transform).getOrigin().getY();
      localizer_pose_msg.pose.position.z = (local_transform * transform).getOrigin().getZ();
      localizer_pose_msg.pose.orientation.x = (local_transform * transform).getRotation().x();
      localizer_pose_msg.pose.orientation.y = (local_transform * transform).getRotation().y();
      localizer_pose_msg.pose.orientation.z = (local_transform * transform).getRotation().z();
      localizer_pose_msg.pose.orientation.w = (local_transform * transform).getRotation().w();
    }
    else
    {
      localizer_pose_msg.header.frame_id = "/map";
      localizer_pose_msg.header.stamp = current_scan_time;
      localizer_pose_msg.pose.position.x = localizer_pose.x;
      localizer_pose_msg.pose.position.y = localizer_pose.y;
      localizer_pose_msg.pose.position.z = localizer_pose.z;
      localizer_pose_msg.pose.orientation.x = localizer_q.x();
      localizer_pose_msg.pose.orientation.y = localizer_q.y();
      localizer_pose_msg.pose.orientation.z = localizer_q.z();
      localizer_pose_msg.pose.orientation.w = localizer_q.w();
    }
 
    predict_pose_pub.publish(predict_pose_msg);
    ndt_pose_pub.publish(ndt_pose_msg);
    // current_pose is published by vel_pose_mux
    //    current_pose_pub.publish(current_pose_msg);
    localizer_pose_pub.publish(localizer_pose_msg);
 
    // Send TF "/base_link" to "/map"
    // base_link到map原点的tf变换
    transform.setOrigin(tf::Vector3(current_pose.x, current_pose.y, current_pose.z));
    transform.setRotation(current_q);
    //    br.sendTransform(tf::StampedTransform(transform, current_scan_time, "/map", "/base_footprint"));
    if (_use_local_transform == true)
    {
      br.sendTransform(tf::StampedTransform(local_transform * transform, current_scan_time, "/map", "/base_footprint"));
    }
    else
    {
      //发步tf变换
      br.sendTransform(tf::StampedTransform(transform, current_scan_time, "/map", "/base_footprint"));
    }
    //计算匹配所需要的时间
    matching_end = std::chrono::system_clock::now();
    exe_time = std::chrono::duration_cast<std::chrono::microseconds>(matching_end - matching_start).count() / 1000.0;
    time_ndt_matching.data = exe_time;
    time_ndt_matching_pub.publish(time_ndt_matching);
 
    // Set values for /estimate_twist
    //发布底盘的运动速度
    estimate_twist_msg.header.stamp = current_scan_time;
    estimate_twist_msg.header.frame_id = "/base_link";
    estimate_twist_msg.twist.linear.x = current_velocity;
    estimate_twist_msg.twist.linear.y = 0.0;
    estimate_twist_msg.twist.linear.z = 0.0;
    estimate_twist_msg.twist.angular.x = 0.0;
    estimate_twist_msg.twist.angular.y = 0.0;
    estimate_twist_msg.twist.angular.z = angular_velocity;
 
    estimate_twist_pub.publish(estimate_twist_msg);
 
    geometry_msgs::Vector3Stamped estimate_vel_msg;
    estimate_vel_msg.header.stamp = current_scan_time;
    estimate_vel_msg.vector.x = current_velocity;
    estimated_vel_pub.publish(estimate_vel_msg);
 
    // Set values for /ndt_stat
    //发布这次匹配的中的数据值
    ndt_stat_msg.header.stamp = current_scan_time;//当前雷达的时间戳
    ndt_stat_msg.exe_time = time_ndt_matching.data;//此次匹配所花时间
    ndt_stat_msg.iteration = iteration;//迭代次数
    ndt_stat_msg.score = fitness_score;//匹配分数
    ndt_stat_msg.velocity = current_velocity;//当前速度
    ndt_stat_msg.acceleration = current_accel;//当前加速度
    ndt_stat_msg.use_predict_pose = 0;//匹配的数据与上次数据的差异值是否过大
 
    ndt_stat_pub.publish(ndt_stat_msg);
    /* Compute NDT_Reliability */
    //此次ndt匹配的可靠性
    ndt_reliability.data = Wa * (exe_time / 100.0) * 100.0 + Wb * (iteration / 10.0) * 100.0 +
                           Wc * ((2.0 - trans_probability) / 2.0) * 100.0;
    ndt_reliability_pub.publish(ndt_reliability);
 
    // Write log
    //ndt日志
    if(_output_log_data)
    {
      if (!ofs)
      {
        std::cerr << "Could not open " << filename << "." << std::endl;
      }
      else
      {
        ofs << input->header.seq << "," << scan_points_num << "," << step_size << "," << trans_eps << "," << std::fixed
            << std::setprecision(5) << current_pose.x << "," << std::fixed << std::setprecision(5) << current_pose.y << ","
            << std::fixed << std::setprecision(5) << current_pose.z << "," << current_pose.roll << "," << current_pose.pitch
            << "," << current_pose.yaw << "," << predict_pose.x << "," << predict_pose.y << "," << predict_pose.z << ","
            << predict_pose.roll << "," << predict_pose.pitch << "," << predict_pose.yaw << ","
            << current_pose.x - predict_pose.x << "," << current_pose.y - predict_pose.y << ","
            << current_pose.z - predict_pose.z << "," << current_pose.roll - predict_pose.roll << ","
            << current_pose.pitch - predict_pose.pitch << "," << current_pose.yaw - predict_pose.yaw << ","
            << predict_pose_error << "," << iteration << "," << fitness_score << "," << trans_probability << ","
            << ndt_reliability.data << "," << current_velocity << "," << current_velocity_smooth << "," << current_accel
            << "," << angular_velocity << "," << time_ndt_matching.data << "," << align_time << "," << getFitnessScore_time
            << std::endl;
      }
    }
 
    std::cout << "-----------------------------------------------------------------" << std::endl;
    std::cout << "Sequence: " << input->header.seq << std::endl;
    std::cout << "Timestamp: " << input->header.stamp << std::endl;
    std::cout << "Frame ID: " << input->header.frame_id << std::endl;
    //		std::cout << "Number of Scan Points: " << scan_ptr->size() << " points." << std::endl;
    std::cout << "Number of Filtered Scan Points: " << scan_points_num << " points." << std::endl;
    std::cout << "NDT has converged: " << has_converged << std::endl;
    std::cout << "Fitness Score: " << fitness_score << std::endl;
    std::cout << "Transformation Probability: " << trans_probability << std::endl;
    std::cout << "Execution Time: " << exe_time << " ms." << std::endl;
    std::cout << "Number of Iterations: " << iteration << std::endl;
    std::cout << "NDT Reliability: " << ndt_reliability.data << std::endl;
    std::cout << "(x,y,z,roll,pitch,yaw): " << std::endl;
    std::cout << "(" << current_pose.x << ", " << current_pose.y << ", " << current_pose.z << ", " << current_pose.roll
              << ", " << current_pose.pitch << ", " << current_pose.yaw << ")" << std::endl;
    std::cout << "Transformation Matrix: " << std::endl;
    std::cout << t << std::endl;
    std::cout << "Align time: " << align_time << std::endl;
    std::cout << "Get fitness score time: " << getFitnessScore_time << std::endl;
    std::cout << "-----------------------------------------------------------------" << std::endl;
 
    offset_imu_x = 0.0;
    offset_imu_y = 0.0;
    offset_imu_z = 0.0;
    offset_imu_roll = 0.0;
    offset_imu_pitch = 0.0;
    offset_imu_yaw = 0.0;
 
    offset_odom_x = 0.0;
    offset_odom_y = 0.0;
    offset_odom_z = 0.0;
    offset_odom_roll = 0.0;
    offset_odom_pitch = 0.0;
    offset_odom_yaw = 0.0;
 
    offset_imu_odom_x = 0.0;
    offset_imu_odom_y = 0.0;
    offset_imu_odom_z = 0.0;
    offset_imu_odom_roll = 0.0;
    offset_imu_odom_pitch = 0.0;
    offset_imu_odom_yaw = 0.0;
 
    // Update previous_***
    //更新上一时刻数据值
    previous_pose.x = current_pose.x;
    previous_pose.y = current_pose.y;
    previous_pose.z = current_pose.z;
    previous_pose.roll = current_pose.roll;
    previous_pose.pitch = current_pose.pitch;
    previous_pose.yaw = current_pose.yaw;
 
    previous_scan_time = current_scan_time;
 
    previous_previous_velocity = previous_velocity;
    previous_velocity = current_velocity;
    previous_velocity_x = current_velocity_x;
    previous_velocity_y = current_velocity_y;
    previous_velocity_z = current_velocity_z;
    previous_accel = current_accel;
 
    previous_estimated_vel_kmph.data = estimated_vel_kmph.data;
  }
}

开启额外的线程进行更新地图

/void* thread_func(void* args)
{
  ros::NodeHandle nh_map;
  ros::CallbackQueue map_callback_queue;
  nh_map.setCallbackQueue(&map_callback_queue);
 
  ros::Subscriber map_sub = nh_map.subscribe("points_map", 10, map_callback);
  ros::Rate ros_rate(10);
  while (nh_map.ok())
  {
    map_callback_queue.callAvailable(ros::WallDuration());
    ros_rate.sleep();
  }

目前对于ndt定位的理解还是比较晦涩,下一步打算从autoware高精度建图开始学习。

;