Bootstrap

使用dlib人脸检测模型进行人脸活体检测:眨眼+张口

零、dlib人脸检测模型使用demo

一、眨眼检测

基本原理:计算眼睛长宽比 Eye Aspect Ratio,EAR.当人眼睁开时,EAR在某个值上下波动,当人眼闭合时,EAR迅速下降,理论上会接近于零,当时人脸检测模型还没有这么精确。所以我们认为当EAR低于某个阈值时,眼睛处于闭合状态。为检测眨眼次数,需要设置同一次眨眼的连续帧数。眨眼速度比较快,一般1~3帧就完成了眨眼动作。两个阈值都要根据实际情况设置。

代码如下:

from imutils.video import FileVideoStream
from imutils.video import VideoStream
from imutils import face_utils
import numpy as np
import imutils
import dlib
import cv2
import sys


def _help():
    print("Usage:")
    print("     python blink_detect.py")
    print("     python blink_detect.py <path of a video>")
    print("For example:")
    print("     python blink_detect.py video/lee.mp4")
    print("If the path of a video is not provided, the camera will be used as the input.Press q to quit.")


def eye_aspect_ratio(eye):
    A = np.linalg.norm(eye[1] - eye[5])
    B = np.linalg.norm(eye[2] - eye[4])
    C = np.linalg.norm(eye[0] - eye[3])
    ear = (A + B) / (2.0 * C)

    return ear


def blink_detection(vs, file_stream):
    # define three constants, one for the eye aspect ratio to indicate
    # blink and then the other constants for the min/max number of consecutive
    # frames the eye must be below the threshold
    EAR_THRESH = 0.2
    EAR_CONSEC_FRAMES_MIN = 1
    EAR_CONSEC_FRAMES_MAX = 2

    # initialize the frame counters and the total number of blinks
    blink_counter = [0, 0]  # left eye and right eye
    blink_total = [0, 0]  # left eye and right eye

    print("[INFO] loading facial landmark predictor...")
    detector = dlib.get_frontal_face_detector()
    predictor = dlib.shape_predictor("model/shape_predictor_68_face_landmarks.dat")

    # grab the indexes of the facial landmarks for the left and
    # right eye, respectively
    (lStart, lEnd) = face_utils.FACIAL_LANDMARKS_IDXS["left_eye"]
    (rStart, rEnd) = face_utils.FACIAL_LANDMARKS_IDXS["right_eye"]

    print("[INFO] starting video stream thread...")
    while True:
        # if this is a file video stream, then we need to check if
        # there any more frames left in the buffer to process
        if file_stream and not vs.more():
            break

        frame = vs.read()
        if frame is not None:
            frame = imutils.resize(frame)
            gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
            rects = detector(gray, 0)

            if len(rects) == 1:
                rect = rects[0]
                shape = predictor(gray, rect)
                shape = face_utils.shape_to_np(shape)

                left_eye = shape[lStart:lEnd]
                right_eye = shape[rStart:rEnd]
                left_ear = eye_aspect_ratio(left_eye)
                right_ear = eye_aspect_ratio(right_eye)

                # compute the convex hull for the left and right eye, then
                # visualize each of the eyes
                left_eye_hull = cv2.convexHull(left_eye)
                right_eye_hull = cv2.convexHull(right_eye)
                cv2.drawContours(frame, [left_eye_hull], -1, (0, 255, 0), 1)
                cv2.drawContours(frame, [right_eye_hull], -1, (0, 255, 0), 1)

                # check to see if the eye aspect ratio is below the blink
                # threshold, and if so, increment the blink frame counter
                if left_ear < EAR_THRESH:
                    blink_counter[0] += 1

                # otherwise, the eye aspect ratio is not below the blink
                # threshold
                else:
                    # if the eyes were closed for a sufficient number of
                    # then increment the total number of blinks
                    if EAR_CONSEC_FRAMES_MIN <= blink_counter[0] and blink_counter[0] <= EAR_CONSEC_FRAMES_MAX:
                        blink_total[0] += 1

                    blink_counter[0] = 0

                # draw the total number of blinks on the frame along with
                # the computed eye aspect ratio for the frame
                cv2.putText(frame, "LBlinks: {}".format(blink_total[0]), (10, 30),
                            cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)
                cv2.putText(frame, "LEAR: {:.2f}".format(left_ear), (10, 60),
                            cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)

                # check to see if the eye aspect ratio is below the blink
                # threshold, and if so, increment the blink frame counter
                if right_ear < EAR_THRESH:
                    blink_counter[1] += 1

                # otherwise, the eye aspect ratio is not below the blink
                # threshold
                else:
                    # if the eyes were closed for a sufficient number of
                    # then increment the total number of blinks
                    if EAR_CONSEC_FRAMES_MIN <= blink_counter[1] and blink_counter[1] <= EAR_CONSEC_FRAMES_MAX:
                        blink_total[1] += 1

                    blink_counter[1] = 0

                # draw the total number of blinks on the frame along with
                # the computed eye aspect ratio for the frame
                cv2.putText(frame, "RBlinks: {}".format(blink_total[1]), (200, 30),
                            cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)
                cv2.putText(frame, "REAR: {:.2f}".format(right_ear), (200, 60),
                            cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)
            elif len(rects) == 0:
                cv2.putText(frame, "No face!", (10, 30),
                            cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)
            else:
                cv2.putText(frame, "More than one face!", (10, 30),
                            cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)
            cv2.namedWindow("Frame", cv2.WINDOW_NORMAL)
            cv2.imshow("Frame", frame)

            # if the `q` key was pressed, break from the loop
            if cv2.waitKey(1) & 0xFF == ord('q'):
                break

    cv2.destroyAllWindows()
    vs.stop()


if len(sys.argv) > 2 or "-h" in sys.argv or "--help" in sys.argv:
    _help()
elif len(sys.argv) == 2:
    vs = FileVideoStream(sys.argv[1]).start()
    file_stream = True
    blink_detection(vs, file_stream)
else:
    vs = VideoStream(src=0).start()
    file_stream = False
    blink_detection(vs, file_stream)

dlib模型官网下载地址:http://dlib.net/files/shape_predictor_68_face_landmarks.dat.bz2

二、张口检测

检测原理:类似眨眼检测,计算Mouth Aspect Ratio,MAR.当MAR大于设定的阈值时,认为张开了嘴巴。

代码如下:

from imutils.video import FileVideoStream
from imutils.video import VideoStream
from imutils import face_utils
import numpy as np
import imutils
import dlib
import cv2
import sys


def _help():
    print("Usage:")
    print("     python mouth_open_detect.py")
    print("     python mouth_open_detect.py <path of a video>")
    print("For example:")
    print("     python mouth_open_detect.py video/lee.mp4")
    print("If the path of a video is not provided, the camera will be used as the input.Press q to quit.")


def mouth_aspect_ratio(mouth):
    A = np.linalg.norm(mouth[2] - mouth[9])  # 51, 59
    B = np.linalg.norm(mouth[4] - mouth[7])  # 53, 57
    C = np.linalg.norm(mouth[0] - mouth[6])  # 49, 55
    mar = (A + B) / (2.0 * C)

    return mar


def mouth_open_detection(vs, file_stream):
    MAR_THRESH = 0.5

    print("[INFO] loading facial landmark predictor...")
    detector = dlib.get_frontal_face_detector()
    predictor = dlib.shape_predictor("model/shape_predictor_68_face_landmarks.dat")

    (mStart, mEnd) = face_utils.FACIAL_LANDMARKS_IDXS["mouth"]

    print("[INFO] starting video stream thread...")
    while True:
        if file_stream and not vs.more():
            break
        frame = vs.read()
        if frame is not None:
            frame = imutils.resize(frame, width=450)
            gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
            rects = detector(gray, 0)

            for rect in rects:
                shape = predictor(gray, rect)
                shape = face_utils.shape_to_np(shape)

                mouth = shape[mStart:mEnd]
                mar = mouth_aspect_ratio(mouth)

                mouth_hull = cv2.convexHull(mouth)
                cv2.drawContours(frame, [mouth_hull], -1, (0, 255, 0), 1)

                if mar > MAR_THRESH:
                    cv2.putText(frame, "Mouth is open!", (10, 30),
                                cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)

                cv2.putText(frame, "MAR: {:.2f}".format(mar), (300, 30),
                            cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)

            cv2.imshow("Frame", frame)
            key = cv2.waitKey(1) & 0xFF

            if key == ord("q"):
                break

    cv2.destroyAllWindows()
    vs.stop()


if len(sys.argv) > 2 or "-h" in sys.argv or "--help" in sys.argv:
    _help()
elif len(sys.argv) == 2:
    vs = FileVideoStream(sys.argv[1]).start()
    file_stream = True
    mouth_open_detection(vs, file_stream)
else:
    vs = VideoStream(src=0).start()
    file_stream = False
    mouth_open_detection(vs, file_stream)

三、眨眼检测+张口检测

from imutils.video import FileVideoStream
from imutils.video import VideoStream
from imutils import face_utils
import numpy as np
import dlib
import cv2
import sys


def _help():
    print("Usage:")
    print("     python liveness_detect.py")
    print("     python liveness_detect.py <path of a video>")
    print("For example:")
    print("     python liveness_detect.py video/lee.mp4")
    print("If the path of a video is not provided, the camera will be used as the input.Press q to quit.")


def eye_aspect_ratio(eye):
    # (|e1-e5|+|e2-e4|) / (2|e0-e3|)
    A = np.linalg.norm(eye[1] - eye[5])
    B = np.linalg.norm(eye[2] - eye[4])
    C = np.linalg.norm(eye[0] - eye[3])
    ear = (A + B) / (2.0 * C)
    return ear


def mouth_aspect_ratio(mouth):
    # (|m2-m9|+|m4-m7|)/(2|m0-m6|)
    A = np.linalg.norm(mouth[2] - mouth[9])  # 51, 59
    B = np.linalg.norm(mouth[4] - mouth[7])  # 53, 57
    C = np.linalg.norm(mouth[0] - mouth[6])  # 49, 55
    mar = (A + B) / (2.0 * C)
    return mar


def liveness_detection(vs, file_stream):
    EAR_THRESH = 0.15
    EAR_CONSEC_FRAMES_MIN = 1
    EAR_CONSEC_FRAMES_MAX = 2
    MAR_THRESH = 0.5

    # 初始化眨眼的连续帧数以及总的眨眼次数
    blink_counter = 0
    blink_total = 0

    print("[INFO] loading facial landmark predictor...")
    detector = dlib.get_frontal_face_detector()
    predictor = dlib.shape_predictor("model/shape_predictor_68_face_landmarks.dat")

    (lStart, lEnd) = face_utils.FACIAL_LANDMARKS_IDXS["left_eye"]
    (rStart, rEnd) = face_utils.FACIAL_LANDMARKS_IDXS["right_eye"]
    (mStart, mEnd) = face_utils.FACIAL_LANDMARKS_IDXS["mouth"]

    print("[INFO] starting video stream thread...")
    while True:
        # if this is a file video stream, then we need to check if
        # there any more frames left in the buffer to process
        if file_stream and not vs.more():
            break

        frame = vs.read()
        if frame is not None:
            gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
            rects = detector(gray, 0)
            # 只能处理一张人脸
            if len(rects) == 1:
                shape = predictor(gray, rects[0])   # 保存68个特征点坐标的<class 'dlib.dlib.full_object_detection'>对象
                shape = face_utils.shape_to_np(shape)   # 将shape转换为numpy数组,数组中每个元素为特征点坐标

                left_eye = shape[lStart:lEnd]
                right_eye = shape[rStart:rEnd]
                left_ear = eye_aspect_ratio(left_eye)
                right_ear = eye_aspect_ratio(right_eye)
                ear = (left_ear + right_ear) / 2.0

                mouth = shape[mStart:mEnd]
                mar = mouth_aspect_ratio(mouth)

                left_eye_hull = cv2.convexHull(left_eye)
                right_eye_hull = cv2.convexHull(right_eye)
                mouth_hull = cv2.convexHull(mouth)
                cv2.drawContours(frame, [left_eye_hull], -1, (0, 255, 0), 1)
                cv2.drawContours(frame, [right_eye_hull], -1, (0, 255, 0), 1)
                cv2.drawContours(frame, [mouth_hull], -1, (0, 255, 0), 1)

                # EAR低于阈值,有可能发生眨眼,眨眼连续帧数加一次
                if ear < EAR_THRESH:
                    blink_counter += 1

                # EAR高于阈值,判断前面连续闭眼帧数,如果在合理范围内,说明发生眨眼
                else:
                    # if the eyes were closed for a sufficient number of
                    # then increment the total number of blinks
                    if EAR_CONSEC_FRAMES_MIN <= blink_counter and blink_counter <= EAR_CONSEC_FRAMES_MAX:
                        blink_total += 1

                    blink_counter = 0

                cv2.putText(frame, "Blinks: {}".format(blink_total), (0, 30),
                            cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)
                cv2.putText(frame, "Mouth: {}".format("open" if mar > MAR_THRESH else "closed"),
                            (130, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)
                cv2.putText(frame, "EAR: {:.2f}".format(ear), (300, 30),
                            cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)
                cv2.putText(frame, "MAR: {:.2f}".format(mar), (450, 30),
                            cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)
            elif len(rects) == 0:
                cv2.putText(frame, "No face!", (0, 30),
                            cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)
            else:
                cv2.putText(frame, "More than one face!", (0, 30),
                            cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)
            cv2.namedWindow("Frame", cv2.WINDOW_NORMAL)
            cv2.imshow("Frame", frame)
            # 按下q键退出循环(鼠标要点击一下图片使图片获得焦点)
            if cv2.waitKey(1) & 0xFF == ord('q'):
                break
    cv2.destroyAllWindows()
    vs.stop()


if len(sys.argv) > 2 or "-h" in sys.argv or "--help" in sys.argv:
    _help()
elif len(sys.argv) == 2:
    video_stream = FileVideoStream(sys.argv[1]).start()
    file_stream = True
    liveness_detection(video_stream, file_stream)
else:
    video_stream = VideoStream(src=0).start()
    file_stream = False
    liveness_detection(video_stream, file_stream)

四、人脸识别破解方法

  • 注入应用攻击:在程序中设置断点,通过不断演示人脸识别流程来触发该断点,然后分析并修改程序存储的值,最终使得静态照片也能通过活体检测
  • 照片攻击:利用合法用户的照片进行验证
  • 视频攻击:利用视频合成软件将合法用户的照片合成为视频
  • 3D建模攻击:制作合法用户的脸部3D模型
  • 脸部模具攻击
  • 利用接口防护不当和设计缺陷

防攻击方式:

  • 多重验证
  • 识别伪造痕迹
  • 提高验证速度

参考博客:

https://www.pyimagesearch.com/2017/04/24/eye-blink-detection-opencv-python-dlib/

https://github.com/mauckc/mouth-open

 

 

悦读

道可道,非常道;名可名,非常名。 无名,天地之始,有名,万物之母。 故常无欲,以观其妙,常有欲,以观其徼。 此两者,同出而异名,同谓之玄,玄之又玄,众妙之门。

;