Bootstrap

使用PyTorch实现逻辑回归:从训练到模型保存与加载

1. 引入必要的库

首先,需要引入必要的库。PyTorch用于构建和训练模型,pandas和numpy用于数据处理,matplotlib用于结果的可视化。

import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, TensorDataset
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt


2. 加载自定义数据集

有一个CSV文件custom_dataset.csv,其中包含特征(自变量)和标签(因变量)。使用pandas来加载数据,并进行预处理。

# 加载自定义数据集
data = pd.read_csv('custom_dataset.csv')

# 假设数据集中有多列特征和一个二分类标签
X = data.iloc[:, :-1].values.astype(np.float32)  # 特征
y = data.iloc[:, -1].values.astype(np.float32)   # 标签

# 将标签转换为0和1
y = np.where(y == 'positive', 1, 0)


3. 创建数据集和数据加载器

使用PyTorch的TensorDatasetDataLoader来创建数据集和数据加载器。

# 创建数据集和数据加载器
dataset = TensorDataset(torch.tensor(X), torch.tensor(y))
train_loader = DataLoader(dataset, batch_size=32, shuffle=True)


4. 定义逻辑回归模型

使用PyTorch的nn.Module来定义逻辑回归模型。

class LogisticRegression(nn.Module):
    def __init__(self, input_dim):
        super(LogisticRegression, self).__init__()
        self.linear = nn.Linear(input_dim, 1)
    
    def forward(self, x):
        outputs = torch.sigmoid(self.linear(x))
        return outputs

# 初始化模型
input_dim = X.shape[1]
model = LogisticRegression(input_dim)

5. 训练模型

定义损失函数和优化器,然后训练模型。

# 定义损失函数和优化器
criterion = nn.BCELoss()
optimizer = optim.SGD(model.parameters(), lr=0.01)

# 训练模型
num_epochs = 100
for epoch in range(num_epochs):
    for inputs, labels in train_loader:
        # 前向传播
        outputs = model(inputs)
        loss = criterion(outputs.flatten(), labels)
        
        # 反向传播和优化
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
    
    if (epoch+1) % 10 == 0:
        print(f'Epoch [{epoch+1}/{num_epochs}], Loss: {loss.item():.4f}')

6. 保存模型

训练完成后,可以使用PyTorch的torch.save函数来保存模型。

# 保存模型
torch.save(model.state_dict(), 'logistic_regression_model.pth')


7. 加载模型并进行预测

在需要时,可以使用torch.load函数加载模型,并进行预测。

# 加载模型
model = LogisticRegression(input_dim)
model.load_state_dict(torch.load('logistic_regression_model.pth'))
model.eval()

# 进行预测
with torch.no_grad():
    sample_inputs = torch.tensor(X[:5]).float()  # 示例输入
    predictions = model(sample_inputs)
    predicted_labels = (predictions.flatten() > 0.5).int()

print("Predicted Labels:", predicted_labels.numpy())

悦读

道可道,非常道;名可名,非常名。 无名,天地之始,有名,万物之母。 故常无欲,以观其妙,常有欲,以观其徼。 此两者,同出而异名,同谓之玄,玄之又玄,众妙之门。

;