Bootstrap

强化学习_06_pytorch-PPO2实践(Humanoid-v4)

一、PPO优化

PPO的简介和实践可以看笔者之前的文章 强化学习_06_pytorch-PPO实践(Pendulum-v1)
针对之前的PPO做了主要以下优化:

-笔者-PPO笔者-PPO2ref
data collectone episodeseveral episode(one batch)
activationReLUTanh
adv-compute-compute adv as one serires
adv-normalizemini-batch normalizeservel envs-batch normalize影响PPO算法性能的10个关键技巧
Value Function Loss Clipping- L V = m a x [ ( V θ t − V t a r ) 2 , ( c l i p ( V θ t , V θ t − 1 − ϵ , V θ t − 1 + ϵ ) ) 2 ] L^{V}=max[(V_{\theta_t} - V_{tar})^2, (clip(V_{\theta_t}, V_{\theta_{t-1}}-\epsilon, V_{\theta_{t-1}}+\epsilon))^2] LV=max[(VθtVtar)2,(clip(Vθt,Vθt1ϵ,Vθt1+ϵ))2]The 37 Implementation Details of Proximal Policy Optimization
optimizeractor-opt & critic-optuse common opt
lossactor-loss-backward & critic-loss-backwardloss weight sum
paramate-init-1- hidden layer orthogonal initialization of weights 2 \sqrt{2} 2 ; 2- The policy output layer weights are initialized with the scale of 0.01; 3- The value output layer weights are initialized with the scale of 1.0The 37 Implementation Details of Proximal Policy Optimization
training envssingle gym envSyncVectorEnv

相比于PPO2_old.py 这次实现了上述的全部优化,

1.1 PPO2 代码

详细可见 Github: PPO2.py


class PPO:
    """
    PPO算法, 采用截断方式
    """
    def __init__(self,
                state_dim: int,
                actor_hidden_layers_dim: typ.List,
                critic_hidden_layers_dim: typ.List,
                action_dim: int,
                actor_lr: float,
                critic_lr: float,
                gamma: float,
                PPO_kwargs: typ.Dict,
                device: torch.device,
                reward_func: typ.Optional[typ.Callable]=None
                ):
        dist_type = PPO_kwargs.get('dist_type', 'beta')
        self.dist_type = dist_type
        self.actor = policyNet(state_dim, actor_hidden_layers_dim, action_dim, dist_type=dist_type).to(device)
        self.critic = valueNet(state_dim, critic_hidden_layers_dim).to(device)
        self.actor_lr = actor_lr
        self.critic_lr = critic_lr
        self.actor_opt = torch.optim.Adam(self.actor.parameters(), lr=actor_lr)
        self.critic_opt = torch.optim.Adam(self.critic.parameters(), lr=critic_lr)
        
        self.gamma = gamma
        self.lmbda = PPO_kwargs['lmbda']
        self.k_epochs = PPO_kwargs['k_epochs'] # 一条序列的数据用来训练的轮次
        self.eps = PPO_kwargs['eps'] # PPO中截断范围的参数
        self.sgd_batch_size = PPO_kwargs.get('sgd_batch_size', 512)
        self.minibatch_size = PPO_kwargs.get('minibatch_size', 128)
        self.action_bound = PPO_kwargs.get('action_bound', 1.0)
        self.action_low = torch.FloatTensor([-1 * self.action_bound]).to(device)
        self.action_high = torch.FloatTensor([self.action_bound]).to(device)
        if 'action_space' in PPO_kwargs:
            self.action_low = torch.FloatTensor(PPO_kwargs['action_space'].low).to(device)
            self.action_high = torch.FloatTensor(PPO_kwargs['action_space'].high).to(device)
        
        self.count = 0 
        self.device = device
        self.reward_func = reward_func
        self.min_batch_collate_func = partial(mini_batch, mini_batch_size=self.minibatch_size)

    def _action_fix(self, act):
        if self.dist_type == 'beta':
            # beta 0-1 -> low ~ high
            return act * (self.action_high - self.action_low) + self.action_low
        return act 
    
    def _action_return(self, act):
        if self.dist_type == 'beta':
            # low ~ high -> 0-1 
            act_out = (act - self.action_low) / (self.action_high - self.action_low)
            return act_out * 1 + 0
        return act 

    def policy(self, state):
        state = torch.FloatTensor(np.array([state])).to(self.device)
        action_dist = self.actor.get_dist(state, self.action_bound)
        action = action_dist.sample()
        action = self._action_fix(action)
        return action.cpu().detach().numpy()[0]

    def update(self, samples: deque):
        state, action, reward, next_state, done = zip(*samples)

        state = torch.FloatTensor(np.stack(state)).to(self.device)
        action = torch.FloatTensor(np.stack(action)).to(self.device)
        reward = torch.tensor(np.stack(reward)).view(-1, 1).to(self.device)
        if self.reward_func is not None:
            reward = self.reward_func(reward)

        next_state = torch.FloatTensor(np.stack(next_state)).to(self.device)
        done = torch.FloatTensor(np.stack(done)).view(-1, 1).to(self.device)
        
        old_v = self.critic(state)
        td_target = reward + self.gamma * self.critic(next_state) * (1 - done)
        td_delta = td_target - old_v
        advantage = compute_advantage(self.gamma, self.lmbda, td_delta, done).to(self.device)
        # recompute
        td_target = advantage + old_v
        # trick1: batch_normalize
        advantage = (advantage - torch.mean(advantage)) / (torch.std(advantage) + 1e-5)
        action_dists = self.actor.get_dist(state, self.action_bound)
        # 动作是正态分布
        old_log_probs = action_dists.log_prob(self._action_return(action))
        if len(old_log_probs.shape) == 2:
            old_log_probs = old_log_probs.sum(dim=1)
        d_set = memDataset(state, action, old_log_probs, advantage, td_target)
        train_loader = DataLoader(
            d_set,
            batch_size=self.sgd_batch_size,
            shuffle=True,
            drop_last=True,
            collate_fn=self.min_batch_collate_func
        )

        for _ in range(self.k_epochs):
            for state_, action_, old_log_prob, adv, td_v in train_loader:
                action_dists = self.actor.get_dist(state_, self.action_bound)
                log_prob = action_dists.log_prob(self._action_return(action_))
                if len(log_prob.shape) == 2:
                    log_prob = log_prob.sum(dim=1)
                # e(log(a/b))
                ratio = torch.exp(log_prob - old_log_prob.detach())
                surr1 = ratio * adv
                surr2 = torch.clamp(ratio, 1 - self.eps, 1 + self.eps) * adv

                actor_loss = torch.mean(-torch.min(surr1, surr2)).float()
                critic_loss = torch.mean(
                    F.mse_loss(self.critic(state_).float(), td_v.detach().float())
                ).float()
                self.actor_opt.zero_grad()
                self.critic_opt.zero_grad()
                actor_loss.backward()
                critic_loss.backward()
                torch.nn.utils.clip_grad_norm_(self.actor.parameters(), 0.5) 
                torch.nn.utils.clip_grad_norm_(self.critic.parameters(), 0.5) 
                self.actor_opt.step()
                self.critic_opt.step()

        return True

    def save_model(self, file_path):
        if not os.path.exists(file_path):
            os.makedirs(file_path)

        act_f = os.path.join(file_path, 'PPO_actor.ckpt')
        critic_f = os.path.join(file_path, 'PPO_critic.ckpt')
        torch.save(self.actor.state_dict(), act_f)
        torch.save(self.critic.state_dict(), critic_f)

    def load_model(self, file_path):
        act_f = os.path.join(file_path, 'PPO_actor.ckpt')
        critic_f = os.path.join(file_path, 'PPO_critic.ckpt')
        self.actor.load_state_dict(torch.load(act_f, map_location='cpu'))
        self.critic.load_state_dict(torch.load(critic_f, map_location='cpu'))
        self.actor.to(self.device)
        self.critic.to(self.device)
        self.actor_opt = torch.optim.Adam(self.actor.parameters(), lr=self.actor_lr)
        self.critic_opt = torch.optim.Adam(self.critic.parameters(), lr=self.critic_lr)

    def train(self):
        self.training = True
        self.actor.train()
        self.critic.train()

    def eval(self):
        self.training = False
        self.actor.eval()
        self.critic.eval()

1.2 ppo2_train

其实就是向量环境多个step进行一次ppo update
详细可见 Github: ppo2_train


def ppo2_train(envs, agent, cfg, 
                    wandb_flag=False, 
                    train_without_seed=False, 
                    step_lr_flag=False, 
                    step_lr_kwargs=None, 
                    test_ep_freq=100,
                    online_collect_nums=1024,
                    test_episode_count=3,
                    wandb_project_name="RL-train_on_policy",
                    add_max_step_reward_flag=False
                ):
    test_env = envs.envs[0]
    env_id = str(test_env).split('>')[0].split('<')[-1]
    if wandb_flag:
        wandb.login()
        cfg_dict = cfg.__dict__
        if step_lr_flag:
            cfg_dict['step_lr_flag'] = step_lr_flag
            cfg_dict['step_lr_kwargs'] = step_lr_kwargs

        algo = agent.__class__.__name__
        now_ = datetime.now().strftime('%Y%m%d__%H%M')
        wandb.init(
            project=wandb_project_name,
            name=f"{algo}__{env_id}__{now_}",
            config=cfg_dict,
            monitor_gym=True
        )
    mini_b = cfg.PPO_kwargs.get('minibatch_size', 12)
    if step_lr_flag:
        opt = agent.actor_opt if hasattr(agent, "actor_opt") else agent.opt
        schedule = StepLR(opt, step_size=step_lr_kwargs['step_size'], gamma=step_lr_kwargs['gamma'])

    tq_bar = tqdm(range(cfg.num_episode))
    rewards_list = []
    now_reward = 0
    recent_best_reward = -np.inf
    update_flag = False
    best_ep_reward = -np.inf
    buffer_ = replayBuffer(cfg.off_buffer_size)
    steps = 0
    rand_seed = np.random.randint(0, 9999)
    final_seed = rand_seed if train_without_seed else cfg.seed
    s, _ = envs.reset(seed=final_seed)
    for i in tq_bar:
        if update_flag:
            buffer_ = replayBuffer(cfg.off_buffer_size)

        tq_bar.set_description(f'Episode [ {i+1} / {cfg.num_episode} ](minibatch={mini_b})')    
        step_rewards = np.zeros(envs.num_envs)
        step_reward_mean = 0.0
        for step_i in range(cfg.off_buffer_size):
            a = agent.policy(s)
            n_s, r, terminated, truncated, infos = envs.step(a)
            done = np.logical_or(terminated, truncated)
            steps += 1
            mem_done = done 
            buffer_.add(s, a, r, n_s, mem_done)
            s = n_s
            step_rewards += r
            if (steps % test_ep_freq == 0) and (steps > cfg.off_buffer_size):
                freq_ep_reward = play(test_env, agent, cfg, episode_count=test_episode_count, play_without_seed=train_without_seed, render=False, ppo_train=True)
                
                if freq_ep_reward > best_ep_reward:
                    best_ep_reward = freq_ep_reward
                    # 模型保存
                    save_agent_model(agent, cfg, f"[ ep={i+1} ](freqBest) bestTestReward={best_ep_reward:.2f}")


            max_step_flag = (step_i == (cfg.off_buffer_size - 1)) and add_max_step_reward_flag
            if max_step_flag:
                step_reward_mean = step_rewards.mean()

            if (("final_info" in infos) or max_step_flag) and step_i >= 5:
                info_counts = 0.0001
                episode_rewards = 0
                for info in infos.get("final_info", dict()):
                    if info and "episode" in info:
                        # print(f"global_step={step_i}, episodic_return={info['episode']['r']}")
                        if isinstance(info["episode"]["r"], np.ndarray):
                            episode_rewards += info["episode"]["r"][0]
                        else:
                            episode_rewards += info["episode"]["r"]
                        info_counts += 1

            # if(steps % cfg.max_episode_steps == 0):
                rewards_list.append(max(episode_rewards/info_counts, step_reward_mean))
                # print(rewards_list[-10:])  0: in buffer_size step not get any point
                now_reward = np.mean(rewards_list[-10:])
                if max_step_flag:
                    step_reward_mean = 0.0

                if (now_reward > recent_best_reward):
                    # best 时也进行测试
                    test_ep_reward = play(test_env, agent, cfg, episode_count=test_episode_count, play_without_seed=train_without_seed, render=False, ppo_train=True)
                    if test_ep_reward > best_ep_reward:
                        best_ep_reward = test_ep_reward
                        # 模型保存
                        save_agent_model(agent, cfg, f"[ ep={i+1} ](recentBest) bestTestReward={best_ep_reward:.2f}")
                    recent_best_reward = now_reward
                
                tq_bar.set_postfix({
                    'lastMeanRewards': f'{now_reward:.2f}', 
                    'BEST': f'{recent_best_reward:.2f}',
                    "bestTestReward": f'{best_ep_reward:.2f}'
                })
                if wandb_flag:
                    log_dict = {
                        'lastMeanRewards': now_reward,
                        'BEST': recent_best_reward,
                        "episodeRewards": episode_rewards,
                        "bestTestReward": best_ep_reward
                    }
                    if step_lr_flag:
                        log_dict['actor_lr'] = opt.param_groups[0]['lr']
                    wandb.log(log_dict)

        update_flag = agent.update(buffer_.buffer, wandb=wandb if wandb_flag else None)
        if step_lr_flag:
            schedule.step()

    envs.close()
    if wandb_flag:
        wandb.finish()
    return agent

二、 Pytorch实践

2.1 智能体构建与训练

PPO2主要是收集n_envs * n_step的结果序列进行训练,针对Humanoid-v4,需要同时对多个环境进行游戏采样(num_envs = 128),同时环境的步数需要进行尝试(笔者尝试了[60, 64, 70, 75, 80, 100, 120, 159, 164)最终采用n_step=80。这里还有一个非常重要的是需要对环境进行NormalizeObservation

2.1.1 NormalizeObservation

下图是几个训练的比较好的未进行环境Normalize的BestTestReward VS 进行环境Normalize的BestTestReward。 所有1500分以上的均是环境Normalize的
在这里插入图片描述
NormalizeObservation的核心就是RunningMeanStd,每个step都对环境进行迭代

# update_mean_var_count_from_moments
    delta = batch_mean - mean
    tot_count = count + batch_count

    new_mean = mean + delta * batch_count / tot_count
    m_a = var * count
    m_b = batch_var * batch_count
    M2 = m_a + m_b + np.square(delta) * count * batch_count / tot_count
    new_var = M2 / tot_count
    new_count = tot_count

2.1.2 进行训练

详细可见 Github: test_ppo.Humanoid_v4_ppo2_test

env_name = 'Humanoid-v4'
num_envs = 128 #64
gym_env_desc(env_name)
print("gym.__version__ = ", gym.__version__ )
path_ = os.path.dirname(__file__)
norm_flag = True
reward_flag = False
envs = gym.vector.SyncVectorEnv(
    [make_env(env_name, obs_norm_trans_flag=norm_flag, reward_norm_trans_flag=reward_flag) for _ in range(num_envs)]
)
dist_type = 'beta'
cfg = Config(
    envs, 
    # 环境参数
    save_path=os.path.join(path_, "test_models" ,f'PPO_Humanoid-v4-{norm_flag}-1'), 
    seed=202405,
    # 网络参数
    actor_hidden_layers_dim=[128, 128, 128],
    critic_hidden_layers_dim=[128, 128, 128],
    # agent参数
    actor_lr=4.5e-4, 
    gamma=0.99,
    # 训练参数
    num_episode=3000, 
    off_buffer_size=80, # batch_size = off_buffer_size * num_env
    max_episode_steps=80,
    PPO_kwargs={
        'lmbda': 0.985, 
        'eps': 0.125,  
        'k_epochs': 3,
        'sgd_batch_size': 2048, # 1024, # 512,
        'minibatch_size': 1024,  # 512,  # 64,
        'action_space': envs.single_action_space,
        'act_type': 'tanh',
        'dist_type': dist_type,
        'critic_coef': 1,
        'max_grad_norm': 3.5, # 45.5
        'clip_vloss': True,
        # 'min_adv_norm': True,
        'anneal_lr': False, # not work
        'num_episode': 3000
    }
)
cfg.test_max_episode_steps = 300
cfg.num_envs = num_envs
minibatch_size = cfg.PPO_kwargs['minibatch_size']
max_grad_norm = cfg.PPO_kwargs['max_grad_norm']
agent = PPO2(
    state_dim=cfg.state_dim,
    actor_hidden_layers_dim=cfg.actor_hidden_layers_dim,
    critic_hidden_layers_dim=cfg.critic_hidden_layers_dim,
    action_dim=cfg.action_dim,
    actor_lr=cfg.actor_lr,
    critic_lr=cfg.critic_lr,
    gamma=cfg.gamma,
    PPO_kwargs=cfg.PPO_kwargs,
    device=cfg.device,
    reward_func=None
)
agent.train()
ppo2_train(envs, agent, cfg, wandb_flag=True, wandb_project_name=f"PPO2-{env_name}",
                train_without_seed=False, test_ep_freq=cfg.off_buffer_size * 10, 
                online_collect_nums=cfg.off_buffer_size,
                test_episode_count=10)
# save norm env
save_env(envs.envs[0], os.path.join(cfg.save_path, 'norm_env.pkl'))

2.2 训练出的智能体观测

最后将训练的最好的网络拿出来进行观察,这里需要注意:我们在训练的时候对环境进行了Normalize,所以在环境初始化的时候,需要将obs_rms (即 RunningMeanStd)中的mean, var, count进行初始化,然后再play

agent.load_model(cfg.save_path)
agent.eval()

with open(os.path.join(cfg.save_path, 'norm_env.pkl'), 'rb') as f:
    env = cloudpickle.load(f)

# p = '/home/scc/sccWork/myGitHub/RL/src/test/test_models/PPO_Humanoid-v4-True-2/norm_env.pkl'
# with open(p, 'rb') as f:
#     env = cloudpickle.load(f)

obs_rms = env.get_wrapper_attr('env').get_wrapper_attr("obs_rms")
env = make_env(env_name, obs_norm_trans_flag=norm_flag, render_mode='human')()
env.get_wrapper_attr('env').get_wrapper_attr("obs_rms").mean = obs_rms.mean
env.get_wrapper_attr('env').get_wrapper_attr("obs_rms").var = obs_rms.var
env.get_wrapper_attr('env').get_wrapper_attr("obs_rms").count = obs_rms.count
# env = make_env(env_name, obs_norm_trans_flag=norm_flag)()
# cfg.max_episode_steps = 1020 
play(env, agent, cfg, episode_count=3, play_without_seed=False, render=True)

在这里插入图片描述

;