背景:朴素贝叶斯(Naive Bayes)是经典的机器学习算法之一,也是为数不多的基于概率论的分类算法。由于朴素贝叶斯计算联合概率,所以朴素贝叶斯模型属于生成式模型。经典应用案例包括:文本分类、垃圾邮件过滤等。
一、贝叶斯公式
贝叶斯公式又被称为贝叶斯规则,是概率统计中的应用所观察到的现象对有关概率分布的主观判断(先验概率)进行修正的标准方法。如果你看到一个人总是做一些好事,则那个人多半会是一个好人。这就是说,当你不能准确知悉一个事物的本质时,你可以依靠与事物特定本质相关的事件出现的多少去判断其本质属性的概率。用数学语言表达就是:支持某项属性的事件发生得愈多,则该属性成立的可能性就愈大。贝叶斯公式中涉及到先验概率、后验概率、条件概率等,具体解释如下。
1、先验概率P(A):指根据以往经验和分析得到的概率。(即基于统计的概率,是基于以往历史经验和分析得到的结果,不需要依赖当前发生的条件。)
2、条件概率P(B|A):记事件A发生的概率为P(A),事件B发生的概率为P(B),则在A事件发生的前提下,B事件发生的概率即为条件概率,记为P(A|B)。
3、后验概率P(A|B):是从条件概率而来,由因推果,是基于当下发生了事件之后计算的概率,依赖于当前发生的条件。
4、联合概率P(AB):表示两个事件共同发生的概率。A与B的联合概率表示为P(AB),或者P(A,B),或者P(A∩B)。
5、贝叶斯公式:贝叶斯公式便是基于条件概率P(B|A)求的联合概率,再求得P(A|B)。
将A看成“类别”,B看成“属性”,那么贝叶斯公式看成:
6、全概率公式:表示若事件构成一个完备事件组且都有正概率,则对任意一个事件B都有公式成立:
将全概率公式带入贝叶斯公式中,得到:
二、朴素贝叶斯分类器
朴素贝叶斯分类器采用了“属性条件独立性假设”,即每个属性独立地对分类结果发生影响。为方便公式标记,不妨记P(C=c|X=x)为P(c|x)。在假设每个属性都独立的情况下,贝叶斯公式可以修改为:
分母是相同的,去掉分母可得:
拉普拉斯修正:若某个属性值在训练集中没有与某个类同时出现过,则训练后的模型会出现 over-fitting 现象。比如训练集中没有该样例,因此连乘式计算的概率值为0,这显然不合理。因为样本中不存在(概率为0),不代该事件一定不可能发生。所以为了避免其他属性携带的信息,被训练集中未出现的属性值“ 抹去” ,在估计概率值时通常要进行“拉普拉斯修正”。
,我们要修正
的值。
令 N 表示训练集 D 中可能的类别数, 表示第i个属性可能的取值数,则贝叶斯公式可修正为:
三、利用朴素贝叶斯处理垃圾邮件
import os
import re
import string
import math
DATA_DIR = 'email'
target_names = ['ham', 'spam']
def get_data(DATA_DIR):
subfolders = ['enron%d' % i for i in range(1,2)]
data = []
target = []
for subfolder in subfolders:
# spam
spam_files = os.listdir(os.path.join(DATA_DIR, subfolder, 'spam'))
for spam_file in spam_files:
with open(os.path.join(DATA_DIR, subfolder, 'spam', spam_file), encoding="latin-1") as f:
data.append(f.read())
target.append(1)
# ham
ham_files = os.listdir(os.path.join(DATA_DIR, subfolder, 'ham'))
for ham_file in ham_files:
with open(os.path.join(DATA_DIR, subfolder, 'ham', ham_file), encoding="latin-1") as f:
data.append(f.read())
target.append(0)
return data, target
X, y = get_data(DATA_DIR)
class SpamDetector_1(object):
"""Implementation of Naive Bayes for binary classification"""
# 清除空格
def clean(self, s):
translator = str.maketrans("", "", string.punctuation)
return s.translate(translator)
# 分开每个单词
def tokenize(self, text):
text = self.clean(text).lower()
return re.split("\W+", text)
# 计算某个单词出现的次数
def get_word_counts(self, words):
word_counts = {}
for word in words:
word_counts[word] = word_counts.get(word, 0.0) + 1.0
return word_counts
class SpamDetector_2(SpamDetector_1):
# X:data,Y:target标签(垃圾邮件或正常邮件)
def fit(self, X, Y):
self.num_messages = {}
self.log_class_priors = {}
self.word_counts = {}
# 建立一个集合存储所有出现的单词
self.vocab = set()
# 统计spam和ham邮件的个数
self.num_messages['spam'] = sum(1 for label in Y if label == 1)
self.num_messages['ham'] = sum(1 for label in Y if label == 0)
# 计算先验概率,即所有的邮件中,垃圾邮件和正常邮件所占的比例
self.log_class_priors['spam'] = math.log(
self.num_messages['spam'] / (self.num_messages['spam'] + self.num_messages['ham']))
self.log_class_priors['ham'] = math.log(
self.num_messages['ham'] / (self.num_messages['spam'] + self.num_messages['ham']))
self.word_counts['spam'] = {}
self.word_counts['ham'] = {}
for x, y in zip(X, Y):
c = 'spam' if y == 1 else 'ham'
# 构建一部字典存储单封邮件中的单词以及其个数
counts = self.get_word_counts(self.tokenize(x))
for word, count in counts.items():
if word not in self.vocab:
self.vocab.add(word) # 确保self.vocab中含有所有邮件中的单词
# 下面语句是为了计算垃圾邮件和非垃圾邮件的词频,即给定词在垃圾邮件和非垃圾邮件中出现的次数。
# c是0或1,垃圾邮件的标签
if word not in self.word_counts[c]:
self.word_counts[c][word] = 0.0
self.word_counts[c][word] += count
MNB = SpamDetector_2()
MNB.fit(X[100:], y[100:])
class SpamDetector(SpamDetector_2):
def predict(self, X):
result = []
flag_1 = 0
# 遍历所有的测试集
for x in X:
counts = self.get_word_counts(self.tokenize(x)) # 生成可以记录单词以及该单词出现的次数的字典
spam_score = 0
ham_score = 0
flag_2 = 0
for word, _ in counts.items():
if word not in self.vocab:
continue
# 下面计算P(内容|垃圾邮件)和P(内容|正常邮件),所有的单词都要进行拉普拉斯平滑
else:
# 该单词存在于正常邮件的训练集和垃圾邮件的训练集当中
if word in self.word_counts['spam'].keys() and word in self.word_counts['ham'].keys():
log_w_given_spam = math.log(
(self.word_counts['spam'][word] + 1) / (
sum(self.word_counts['spam'].values()) + len(self.vocab)))
log_w_given_ham = math.log(
(self.word_counts['ham'][word] + 1) / (sum(self.word_counts['ham'].values()) + len(
self.vocab)))
# 该单词存在于垃圾邮件的训练集当中,但不存在于正常邮件的训练集当中
if word in self.word_counts['spam'].keys() and word not in self.word_counts['ham'].keys():
log_w_given_spam = math.log(
(self.word_counts['spam'][word] + 1) / (
sum(self.word_counts['spam'].values()) + len(self.vocab)))
log_w_given_ham = math.log(1 / (sum(self.word_counts['ham'].values()) + len(
self.vocab)))
# 该单词存在于正常邮件的训练集当中,但不存在于垃圾邮件的训练集当中
if word not in self.word_counts['spam'].keys() and word in self.word_counts['ham'].keys():
log_w_given_spam = math.log(1 / (sum(self.word_counts['spam'].values()) + len(self.vocab)))
log_w_given_ham = math.log(
(self.word_counts['ham'][word] + 1) / (sum(self.word_counts['ham'].values()) + len(
self.vocab)))
# 把计算到的P(内容|垃圾邮件)和P(内容|正常邮件)加起来
spam_score += log_w_given_spam
ham_score += log_w_given_ham
flag_2 += 1
# 最后,还要把先验加上去,即P(垃圾邮件)和P(正常邮件)
spam_score += self.log_class_priors['spam']
ham_score += self.log_class_priors['ham']
# 最后进行预测,如果spam_score > ham_score则标志为1,即垃圾邮件
if spam_score > ham_score:
result.append(1)
else:
result.append(0)
flag_1 += 1
return result
MNB = SpamDetector()
MNB.fit(X[100:], y[100:])
pred = MNB.predict(X[:100])
true = y[:100]
accuracy = 0
for i in range(100):
if pred[i] == true[i]:
accuracy += 1
print(accuracy)
运行结果:
总结:朴素贝叶斯算法的优缺点
优点:
1)朴素贝叶斯模型发源于古典数学理论,有稳定的分类效率。
2)对小规模的数据表现很好,能个处理多分类任务,适合增量式训练,尤其是数据量超出内存时,我们可以一批批的去增量训练。
3)对缺失数据不太敏感,算法也比较简单,常用于文本分类。
缺点:
1) 理论上,朴素贝叶斯模型与其他分类方法相比具有最小的误差率。但是实际上并非总是如此,这是因为朴素贝叶斯模型假设属性之间相互独立,这个假设在实际应用中往往是不成立的,在属性个数比较多或者属性之间相关性较大时,分类效果不好。而在属性相关性较小时,朴素贝叶斯性能最为良好。对于这一点,有半朴素贝叶斯之类的算法通过考虑部分关联性适度改进。
2)需要知道先验概率,且先验概率很多时候取决于假设,假设的模型可以有很多种,因此在某些时候会由于假设的先验模型的原因导致预测效果不佳。
3)由于我们是通过先验和数据来决定后验的概率从而决定分类,所以分类决策存在一定的错误率。
4)对输入数据的表达形式很敏感。