Bootstrap

[论文笔记] Deepseek-R1&R1-zero技术报告阅读

启发:

1、SFT&RL的训练数据使用CoT输出的格式,先思考再回答,大大提升模型的数学与推理能力。

2、RL训练使用群体相对策略优化(GRPO),奖励模型是规则驱动,准确性奖励和格式化奖励。

1. 总体概述

  • 背景与目标

    • 报告聚焦于利用强化学习(RL)提升大型语言模型(LLMs)的推理能力,旨在探索在不依赖大规模监督微调(SFT)的情况下,模型如何自我进化并形成强大的推理能力。

    • 介绍了两代模型:DeepSeek-R1-Zero(纯 RL,无 SFT 冷启动数据)和 DeepSeek-R1(在 RL 前加入少量冷启动数据和多阶段训练流程,提升可读性及推理表现)。

  • 核心思路

    • 直接在基础模型上应用大规模强化学习,利用规则设计的奖励机制(包括准确性奖励和格式奖励)激励生成长链思维(CoT)。

    • 通过拒绝采样和后续的监督微调,进一步改善模型输出的可读性和对齐人类偏好。

;