Bootstrap

智能、人机融合智能与深度态势感知

0 引言

人工智能主要有符号主义、联结主义和行为主义三大学派。自古希腊人将欧几里得几何归纳整理成欧几里得公理体系,到牛顿编撰的鸿篇巨著《自然哲学的数学原理》,人类的现代数学和物理知识被系统化整理成公理体系。符号主义的主要思想便是应用逻辑推理法则,从公理出发推演整个理论体系[6] 。但是符号主义思想面临四个主要挑战:1. 知识的自动获取;2. 多元知识的的自动融合;3. 面向知识的表征学习;4. 知识推理与运用。符号主义虽通过模拟人的思维过程实现人工智能,但在以上四个问题难以有突破性的结果[7] 。联结主义的基本思想则是模拟人类大脑的神经元网络,将人工神经网络设计成多级结构,低级的输出作为高级的输入[6] 。但该方法限制于在具有可微分、强监督学习、封闭静态系统任务下才会得到良好的结果,并且训练得到的结果也限制于给定条件的问题上。行为主义思想通过不断模仿人或生物个体的行为超越原有的表现来推进机器的进化,主要依赖具有奖惩控制机制的强化学习方法。然而该方法的缺点在于过于简化人类的行为过程,忽略人类心理的内部活动过程,忽略意识的重要性[7] 。

人工智能的优势在于庞大的信息存储量和高速的处理速度,但是无法处理如休谟之问,即从“是”(being )能否推出“应该”(should ),也即“事实”命题能否推出“价值”命题;也无法处理情感的表征问题。人工智能尝试通过大数据与逐步升级的算法实现人的情感与意指依旧没有办法实现跨越[7] 。

75a7b373bfde4ff84daaff206201c280.jpeg

1. 智能的产生

有关智能生成的机理,一直是许多领域关注的焦点问题,涉及面之广、深很是少见,初步梳理可能会与这样几个最基本的问题有关:认知生成的机理、知识生成的机理、意义生成的机理、情感生成的机理、情境生成的机理,甚至还避不开哲学的基本问题:世界的本源是物质的还是意识的?我是谁?从哪里来?到哪里去?认识世界的手段如何?语言是破解人类智能的钥匙吗?心灵与现象的关系如何?等等……

这个问题远不是几位数学家、哲学家、物理学家、计算机专家、自动化专家、社会学者、心理学学者、语言学工作者开几次研讨会所能解决的,历史已经证明,莱布尼兹、维特根斯坦、爱因斯坦、薛定谔、图灵、维纳、香浓、贝塔朗菲、冯诺依曼、西蒙、明斯基、辛顿等先驱大师的智能思想混合在一起并没有发生期待中的化学变化。这个问题有点像爱情生成的机理一样,有一千对罗密欧与朱丽叶、一万双许仙与白娘子的故事就有成千上万的解释和理解。对人类而言,这是一个永恒的话题,是世世代代追求的梦中情人和理想家园。无论如何,“没有人,就没有智能,也就没有人工智能”这个道理依然存在实用。

智能的生成机理,也许就像哲学中“我”的三个问题(谁?哪里来?哪里去?),本质是文化问题,智能也是多种文化交互作用的结果。其中休谟之问(能否从客观事实中推出主观价值来?即如何从“是”/being 推出“应该”/should 问题)可能是一个切入点,几乎所有的智能生成都将涉及到主观目的和动机(无论有意或无意),都会与情境中的客观事实变化相关。而解答休谟之问的关键则是各种显隐类比机制的破解(如潜意识就是隐类比),对此,侯世达在《表象与本质》一书做了很好的思考,但仍有一些问题值得商榷,譬如事物的表象与本质常常互为嵌套,表里不一,似是而非等。实质上,人类的理解过程就是在事实being 中寻找到了价值should 的过程。有词典解释为:to know the meaning of…… ,这个know 是主体的,这个meaning 也是个性化的。所以,严格意义上讲,理解就是:自以为是;而智能则是:实事求是。智能是不分领域的,但是可以跨域迁移的

;