Bootstrap

python 利用cartopy绘制世界地图中部分地区的风场

python 利用cartopy绘制世界地图中部分地区的风场

先看效果图(1982-1984 200hPa高度风场,60°E-150°E,0-40°N)

在这里插入图片描述


需要用到的库

import cartopy.crs as ccrs
import cartopy.feature as cf
import netCDF4 as nc
import numpy as np
import matplotlib.pyplot as plt

建议使用anaconda安装cartopy

建议使用pip安装netCDF4

绘图过程

设置中文字体(基本每次绘图都要用)

#  设置画图字体的大小
plt.rcParams.update({'font.size': 4})
#  解决中文乱码问题
plt.rcParams['font.sans-serif'] = ['SimHei']
#  解决负号乱码问题
plt.rcParams['axes.unicode_minus'] = False

创建画布

fig = plt.figure(figsize=(2, 2), dpi=400)

指定绘图区域以及中心精度

ax = fig.add_axes([0.2, 0, 0.6, 1], projection=ccrs.PlateCarree(central_longitude=0))

导入相关地图信息

ax.add_feature(cf.LAND.with_scale('110m'))
ax.add_feature(cf.OCEAN.with_scale('110m'))
ax.add_feature(cf.COASTLINE.with_scale('110m'), lw=0.4)
ax.add_feature(cf.RIVERS.with_scale('110m'), lw=0.4)

设置经线纬线样式以及坐标

gl = ax.gridlines(draw_labels=True, linestyle=":", linewidth=0.3, color='k')

导入数据

file = 'DATA.nc'
nc_object = nc.Dataset(file)
lons = nc_object.variables['lon'][:]
lats = nc_object.variables['lat'][:]
u = nc_object.variables['U']
v = nc_object.variables['V']

(读取nc文件有时间再写一篇)

u,v是三维的(时间,高度,纬度,经度)(因为用xgrads转换来的,所以维度是反的)

数据处理

u = np.mean(u, axis=0)[0, :, :]
v = np.mean(v, axis=0)[0, :, :]

先取平均后再取第二层高度,在本次数据中只有两个高度(850hPa和200hPa)

生成网格点

X, Y = np.meshgrid(lons, lats)

绘制风场

q = plt.quiver(X, Y, u, v)

plt.quiver还有很多参数可以调节,具体可见官网quiver

绘制风向标并加注说明

ax.quiverkey(q, 1.1, 0.07, 5, ' ')
plt.text(162, 3, '5m/s', fontsize=4)

自带的说明在本图中与示例箭头距离稍远,故自己plt.text一个说明

设置标题,x,y轴的title

plt.title('1982-1984 JJA wind')
plt.xlabel('lon')
plt.ylabel('lat')
plt.show()

整段代码

import cartopy.crs as ccrs
import cartopy.feature as cf
import netCDF4 as nc
import numpy as np
import matplotlib.pyplot as plt

#  设置画图字体的大小
plt.rcParams.update({'font.size': 4})
#  解决中文乱码问题
plt.rcParams['font.sans-serif'] = ['SimHei']
#  解决负号乱码问题
plt.rcParams['axes.unicode_minus'] = False
fig = plt.figure(figsize=(2, 2), dpi=400)
ax = fig.add_axes([0.2, 0, 0.6, 1], projection=ccrs.PlateCarree(central_longitude=0))
ax.add_feature(cf.LAND.with_scale('110m'))
ax.add_feature(cf.OCEAN.with_scale('110m'))
ax.add_feature(cf.COASTLINE.with_scale('110m'), lw=0.4)
ax.add_feature(cf.RIVERS.with_scale('110m'), lw=0.4)
gl = ax.gridlines(draw_labels=True, linestyle=":", linewidth=0.3, color='k')
ax.set_title('gridlines经纬度风格', fontsize=2)

file = 'DATA.nc'
nc_object = nc.Dataset(file)
lons = nc_object.variables['lon'][:]
lats = nc_object.variables['lat'][:]
u = nc_object.variables['U']
v = nc_object.variables['V']
print(u.shape)
u = np.mean(u, axis=0)[1, :, :]
v = np.mean(v, axis=0)[1, :, :]
X, Y = np.meshgrid(lons, lats)
q = plt.quiver(X, Y, u, v)
ax.quiverkey(q, 1.1, 0.07, 30, ' ')
plt.text(162, 3, '5m/s', fontsize=4)
plt.title('1982-1984 JJA wind')
plt.xlabel('lon')
plt.ylabel('lat')
plt.show()

;