import numpy as np
array=np.array([[1,2,3],
[2,3,4]],dtype=np.int64)
array.dtype
dtype('int64')
array.ndaim
2
array.shape//两行三列
(2, 3)
array.size//元素数量
6
a=np.zeros((3,4))
a
array([[0., 0., 0., 0.],
[0., 0., 0., 0.],
[0., 0., 0., 0.]])
a=np.ones((3,4))
a
array([[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.]])
a=np.arange(10,20,2)
a
array([10, 12, 14, 16, 18])
a=np.arange(12).reshape(3,4)
a
array([[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11]])
a=np.linspace(1,10,5)
a
array([ 1. , 3.25, 5.5 , 7.75, 10. ])
a=np.array([10,20,30,40])
b=np.arange(4)
array([10, 19, 28, 37])
c=a-b
c
array([10, 19, 28, 37])
c=a+b
c
array([10, 21, 32, 43])
c=b**2
c
array([0, 1, 4, 9], dtype=int32)
c=b**3
c
array([ 0, 1, 8, 27], dtype=int32)
c=np.sin(a)
c
array([-0.54402111, 0.91294525, -0.98803162, 0.74511316])
b<3
array([ True, True, True, False])
a=np.array([[1,1],
[0,1]])
b=np.arange(4).reshape((2,2))
array([[0, 1],
[2, 3]])
c=a*b
c_dot=a.dot(b)
c_dot2=b.dot(a)
print(c)
print(c_dot)
print(c_dot2)
[[0 1]
[0 3]]
[[2 4]
[2 3]]
[[0 1]
[2 5]]
a=np.random.random((2,4))
a
array([[0.12211839, 0.99464928, 0.56834017, 0.14783266],
[0.31955459, 0.09813546, 0.36572719, 0.77154438]])
np.sum(a)
3.387902131846119
np.min(a)
0.09813546195219025
np.max(a)
0.9946492833863441
np.sum(a,axis=1)
array([1.83294051, 1.55496162])
np.min(a,axis=1)
array([0.12211839, 0.09813546])
np.max(a,axis=1)
array([0.99464928, 0.77154438])
A=np.arange(2,14).reshape((3,4))
A
array([[ 2, 3, 4, 5],
[ 6, 7, 8, 9],
[10, 11, 12, 13]])
np.argmin(A)
0
np.argmax(A)
11
np.mean(A)
np.average(A)
7.5
np.mean(A,axis=1)
array([12.5, 8.5, 4.5])
np.median(A)
7.5
np.cumsum(A)
array([ 2, 5, 9, 14, 20, 27, 35, 44, 54, 65, 77, 90], dtype=int32)
np.diff(A)
array([[1, 1, 1],
[1, 1, 1],
[1, 1, 1]])
np.nonzero(A)
(array([0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2], dtype=int64),
array([0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3], dtype=int64))
A=np.arange(14,2,-1).reshape((3,4))
np.sort(A)
array([[11, 12, 13, 14],
[ 7, 8, 9, 10],
[ 3, 4, 5, 6]])
np.transpose(A)
A.T
array([[14, 10, 6],
[13, 9, 5],
[12, 8, 4],
[11, 7, 3]])
np.clip(A,5,9)
array([[9, 9, 9, 9],
[9, 9, 8, 7],
[6, 5, 5, 5]])
A=np.arange(3,15).reshape((3,4))
print(A)
A[1][1]
[[ 3 4 5 6]
[ 7 8 9 10]
[11 12 13 14]]
12
A[1,:]
array([ 7, 8, 9, 10])
for row in A:
print(row)
[3 4 5 6]
[ 7 8 9 10]
[11 12 13 14]
for col in A.T:
print(col)
[ 3 7 11]
[ 4 8 12]
[ 5 9 13]
[ 6 10 14]
A.flatten()
array([ 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14])
for item in A.flat:
print(item)
3
4
5
6
7
8
9
10
11
12
13
14
A=np.array([1,1,1])
B=np.array([2,2,2])
np.vstack((A,B))
array([[1, 1, 1],
[2, 2, 2]])
np.hstack((A,B))
array([1, 1, 1, 2, 2, 2])
A[:,np.newaxis]
array([[1],
[1],
[1]])
A=A[:,np.newaxis]
B=B[:,np.newaxis]
print(A)
print(B)
[[1]
[1]
[1]]
[[2]
[2]
[2]]
np.vstack((A,B))
array([[1],
[1],
[1],
[2],
[2],
[2]])
np.hstack((A,B))
array([[1, 2],
[1, 2],
[1, 2]])
np.concatenate((A,B,B,A),axis=1)
array([[1, 2, 2, 1],
[1, 2, 2, 1],
[1, 2, 2, 1]])
A=np.arange(12).reshape((3,4))
A
array([[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11]])
np.split(A,2,axis=1)
[array([[0, 1],
[4, 5],
[8, 9]]), array([[ 2, 3],
[ 6, 7],
[10, 11]])]
np.split(A,3,axis=0)
[array([[0, 1, 2, 3]]), array([[4, 5, 6, 7]]), array([[ 8, 9, 10, 11]])]
np.array_split(A,3,axis=1)
[array([[0, 1],
[4, 5],
[8, 9]]), array([[ 2],
[ 6],
[10]]), array([[ 3],
[ 7],
[11]])]
np.vsplit(A,3)
[array([[0, 1, 2, 3]]), array([[4, 5, 6, 7]]), array([[ 8, 9, 10, 11]])]
np.hsplit(A,2)
[array([[0, 1],
[4, 5],
[8, 9]]), array([[ 2, 3],
[ 6, 7],
[10, 11]])]
a=np.arange(4)
b=a
d=b
a[0]=-1
a
array([-1, 1, 2, 3])
b
array([-1, 1, 2, 3])
d
array([-1, 1, 2, 3])
d[1]=-2
a
array([-1, -2, 2, 3])
b=a.copy()
a[3]=-3
b
array([-1, -2, 2, -3])