手撕IOU
import numpy as np
def cal_iou(box1, box2):
# box [x1, y1, x2, y2]
x1 = np.max(box1[0], box2[0])
y1 = np.max(box1[1], box2[1])
x2 = np.min(box1[2], box2[2])
y2 = np.min(box1[3], box2[3])
inter = np.max((x2 - x1 + 1) * (y2 - y1 + 1), 0) # 若小于0表示不相交
over = (box1[2] - box1[0] + 1) * (box1[3] - box1[1] + 1) + \
(box2[2] - box2[0] + 1) * (box2[3] - box2[1] + 1) - \
inter
iou = inter / over
return iou
手撕NMS
1.对所有预测框的置信度降序排序
2.选出置信度最高的预测框,确认其为正确预测,并计算其与剩余预测框的IOU
3.若IOU>threshold阈值表示重叠度过高,将其删除
4.重复上述过程处理完所有检测框
def py_cpu_nms(dets, thresh):
"""Pure Python NMS baseline."""
#x1、y1、x2、y2、以及score赋值
x1 = dets[:, 0]
y1 = dets[:, 1]
x2 = dets[:, 2]
y2 = dets[:, 3]
scores = dets[:, 4]
#每一个检测框的面积
areas = (x2 - x1 + 1) * (y2 - y1 + 1)
#按照score置信度降序排序
order = scores.argsort()[::-1]
keep = [] #保留的结果框集合
while order.size > 0:
i = order[0]
keep.append(i) #保留该类剩余box中得分最高的一个
#得到相交区域,左上及右下
xx1 = np.maximum(x1[i], x1[order[1:]])
yy1 = np.maximum(y1[i], y1[order[1:]])
xx2 = np.minimum(x2[i], x2[order[1:]])
yy2 = np.minimum(y2[i], y2[order[1:]])
#计算相交的面积,不重叠时面积为0
w = np.maximum(0.0, xx2 - xx1 + 1)
h = np.maximum(0.0, yy2 - yy1 + 1)
inter = w * h
#计算IoU:重叠面积 /(面积1+面积2-重叠面积)
ovr = inter / (areas[i] + areas[order[1:]] - inter)
#保留IoU小于阈值的box
inds = np.where(ovr <= thresh)[0]
order = order[inds + 1] #因为ovr数组的长度比order数组少一个,所以这里要将所有下标后移一位
return keep
参考:
https://www.cnblogs.com/makefile/p/nms.html
https://mp.weixin.qq.com/s/8Tjw49w2mZRImtCo2CYncw