#logistic- caret::train
#划分数据集
set.seed(123)
folds <- createFolds(y=data$Groups,k=10)
# 建一个放auc值的空向量
auc<-as.numeric()
Errorrate<-as.numeric()
accuracy<-as.numeric()
sensitivity<-as.numeric()
specificity<-as.numeric()
roc <- vector("list", 10)
#设置交叉验证参数
set.seed(123) #使结果具有可重复性
trainControl<- trainControl(method = "cv", number = 10)
for(i in 1:10){
test <- data[folds[[i]],]
train <- data[-folds[[i]],]
logit<- caret::train(Groups ~ ., data = train,
family = binomial(link = "logit"),
trainControl= trainControl
#linout = FALSE,
#trace = FALSE
)
#预测
pred &l