Bootstrap

大数据毕设选题 - 大数据招聘租房数据分析可视化系统(python)


0 前言

🔥 Hi,大家好,这里是丹成学长的毕设系列文章!

🔥 对毕设有任何疑问都可以问学长哦!

这两年开始,各个学校对毕设的要求越来越高,难度也越来越大… 毕业设计耗费时间,耗费精力,甚至有些题目即使是专业的老师或者硕士生也需要很长时间,所以一旦发现问题,一定要提前准备,避免到后面措手不及,草草了事。

为了大家能够顺利以及最少的精力通过毕设,学长分享优质毕业设计项目,今天要分享的新项目是

🚩 基于大数据的招聘与租房分析可视化系统

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:4分
  • 工作量:4分
  • 创新点:3分

🧿 选题指导, 项目分享:

https://gitee.com/yaa-dc/BJH/blob/master/gg/cc/README.md



1 课题项目介绍

学长设计的本项目利用 python 网络爬虫抓取常见招聘网站和租房网站的租房信息,完成数据清洗和结构化,存储到数据库中,搭建web系统对招聘信息的薪资、待遇和租房的地区、朝向、价格影响因素进行统计分析并可视化展示。

在这里插入图片描述


2 相关技术介绍

2.1 爬虫

网络爬虫是一种按照一定的规则,自动地抓取万维网信息的程序或者脚本。爬虫对某一站点访问,如果可以访问就下载其中的网页内容,并且通过爬虫解析模块解析得到的网页链接,把这些链接作为之后的抓取目标,并且在整个过程中完全不依赖用户,自动运行。若不能访问则根据爬虫预先设定的策略进行下一个 URL的访问。在整个过程中爬虫会自动进行异步处理数据请求,返回网页的抓取数据。在整个的爬虫运行之前,用户都可以自定义的添加代理,伪 装 请求头以便更好地获取网页数据。爬虫流程图如下:

在这里插入图片描述

2.2 Ajax技术

Ajax 是一种独立于 Web 服务器软件的浏览器技术。

Ajax使用 JavaScript 向服务器提出请求并处理响应而不阻塞的用户核心对象XMLHttpRequest。通过这个对象,您的 JavaScript 可在不重载页面的情况与 Web 服务器交换数据,即在不需要刷新页面的情况下,就可以产生局部刷新的效果。

前端将需要的参数转化为JSON字符串,再通过get/post方式向服务器发送一个请并将参数直接传递给后台,后台对前端请求做出反应,接收数据,将数据作为条件查询,但会j’son字符串格式的查询结果集给前端,前端接收到后台返回的数据进行条件判断并作出相应的页面展示。

$.ajax({
			    url: 'http://127.0.0.1:5000/updatePass',
				type: "POST",
				data:JSON.stringify(data.field),
				contentType: "application/json; charset=utf-8",
				dataType: "json",
				success: function(res) {
					if (res.code == 200) {
                        layer.msg(res.msg, {icon: 1});
                    } else {
                        layer.msg(res.msg, {icon: 2});
				    }
				}
			})

3 Echarts

ECharts(Enterprise Charts)是百度开源的数据可视化工具,底层依赖轻量级Canvas库ZRender。兼容了几乎全部常用浏览器的特点,使它可广泛用于PC客户端和手机客户端。ECharts能辅助开发者整合用户数据,创新性的完成个性化设置可视化图表。支持折线图(区域图)、柱状图(条状图)、散点图(气泡图)、K线图、饼图(环形图)等,通过导入 js 库在 Java Web 项目上运行。


4 数据获取

我们利用 python 的 request + beautifulsoup 从某拉勾网和链家等平台抓取了九个城市的招聘和租房数据。

4.1 总体流程如下

在这里插入图片描述

4.2 获取招聘数据

因为拉勾网具有较强的反爬机制,使用user-agent和cookies封装头部信息,将爬虫程序伪装成浏览器访问网页,通过request包post方法进行url请求,请求成功返回json格式字符串,并使用字典方法直接读取数据,即可拿到我们想要的python职位相关的信息,可以通过读取总职位数,通过总的职位数和每页能显示的职位数,我们可以计算出总共有多少页,然后使用循环按页爬取,最后将职位信息汇总,写入到CSV格式的文件以及本地的mysql数据库中。

import requests
import math
import time
import pandas as pd
import pymysql
from sqlalchemy import create_engine

def get_json(url, num):
    """
    从指定的url中通过requests请求携带请求头和请求体获取网页中的信息,
    :return:
    """
    url1 = 'https://www.lagou.com/jobs/list_python/p-city_0?&cl=false&fromSearch=true&labelWords=&suginput='
    headers = {
        'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/66.0.3359.139 Safari/537.36',
        'Host': 'www.lagou.com',
        'Referer': 'https://www.lagou.com/jobs/list_%E6%95%B0%E6%8D%AE%E5%88%86%E6%9E%90?labelWords=&fromSearch=true&suginput=',
        'X-Anit-Forge-Code': '0',
        'X-Anit-Forge-Token': 'None',
        'X-Requested-With': 'XMLHttpRequest',
        'Cookie':'user_trace_token=20210218203227-35e936a1-f40f-410d-8400-b87f9fb4be0f; _ga=GA1.2.331665492.1613651550; LGUID=20210218203230-39948353-de3f-4545-aa01-43d147708c69; LG_HAS_LOGIN=1; hasDeliver=0; privacyPolicyPopup=false; showExpriedIndex=1; showExpriedCompanyHome=1; showExpriedMyPublish=1; RECOMMEND_TIP=true; index_location_city=%E5%85%A8%E5%9B%BD; Hm_lvt_4233e74dff0ae5bd0a3d81c6ccf756e6=1613651550,1613652253,1613806244,1614497914; _putrc=52ABCFBE36E5D0BD123F89F2B170EADC; gate_login_token=ea312e017beac7fe72547a32956420b07d6d5b1816bc766035dd0f325ba92b91; JSESSIONID=ABAAAECAAEBABII8D8278DB16CB050FD656DD1816247B43; login=true; unick=%E7%94%A8%E6%88%B72933; WEBTJ-ID=20210228%E4%B8%8B%E5%8D%883:38:37153837-177e7932b7f618-05a12d1b3d5e8c-53e356a-1296000-177e7932b8071; sensorsdata2015session=%7B%7D; _gid=GA1.2.1359196614.1614497918; __lg_stoken__=bb184dd5d959320e9e61d943e802ac98a8538d44699751621e807e93fe0ffea4c1a57e923c71c93a13c90e5abda7a51873c2e488a4b9d76e67e0533fe9e14020734016c0dcf2; X_MIDDLE_TOKEN=90b85c3630b92280c3ad7a96c881482e; LGSID=20210228161834-659d6267-94a3-4a5c-9857-aaea0d5ae2ed; TG-TRACK-CODE=index_navigation; SEARCH_ID=092c1fd19be24d7cafb501684c482047; X_HTTP_TOKEN=fdb10b04b25b767756070541617f658231fd72d78b; sensorsdata2015jssdkcross=%7B%22distinct_id%22%3A%2220600756%22%2C%22first_id%22%3A%22177b521c02a552-08c4a0f886d188-73e356b-1296000-177b521c02b467%22%2C%22props%22%3A%7B%22%24latest_traffic_source_type%22%3A%22%E7%9B%B4%E6%8E%A5%E6%B5%81%E9%87%8F%22%2C%22%24latest_search_keyword%22%3A%22%E6%9C%AA%E5%8F%96%E5%88%B0%E5%80%BC_%E7%9B%B4%E6%8E%A5%E6%89%93%E5%BC%80%22%2C%22%24latest_referrer%22%3A%22%22%2C%22%24os%22%3A%22Linux%22%2C%22%24browser%22%3A%22Chrome%22%2C%22%24browser_version%22%3A%2288.0.4324.190%22%2C%22lagou_company_id%22%3A%22%22%7D%2C%22%24device_id%22%3A%22177b521c02a552-08c4a0f886d188-73e356b-1296000-177b521c02b467%22%7D; _gat=1; Hm_lpvt_4233e74dff0ae5bd0a3d81c6ccf756e6=1614507066; LGRID=20210228181106-f2d71d85-74fe-4b43-b87e-d78a33c872ad'
    }
    data = {
        'first': 'true',
        'pn': num,
        'kd': 'BI工程师'}
    #得到Cookies信息
    s = requests.Session()
    print('建立session:', s, '\n\n')
    s.get(url=url1, headers=headers, timeout=3)
    cookie = s.cookies
    print('获取cookie:', cookie, '\n\n')
    #添加请求参数以及headers、Cookies等信息进行url请求
    res = requests.post(url, headers=headers, data=data, cookies=cookie, timeout=3)
    res.raise_for_status()
    res.encoding = 'utf-8'
    page_data = res.json()
    print('请求响应结果:', page_data, '\n\n')
    return page_data


def get_page_num(count):
    """
    计算要抓取的页数,通过在拉勾网输入关键字信息,可以发现最多显示30页信息,每页最多显示15个职位信息
    :return:
    """
    page_num = math.ceil(count / 15)
    if page_num > 29:
        return 29
    else:
        return page_num


def get_page_info(jobs_list):
    """
    获取职位
    :param jobs_list:
    :return:
    """
    page_info_list = []
    for i in jobs_list:  # 循环每一页所有职位信息
        job_info = []
        job_info.append(i['companyFullName'])
        job_info.append(i['companyShortName'])
        job_info.append(i['companySize'])
        job_info.append(i['financeStage'])
        job_info.append(i['district'])
        job_info.append(i['positionName'])
        job_info.append(i['workYear'])
        job_info.append(i['education'])
        job_info.append(i['salary'])
        job_info.append(i['positionAdvantage'])
        job_info.append(i['industryField'])
        job_info.append(i['firstType'])
        job_info.append(",".join(i['companyLabelList']))
        job_info.append(i['secondType'])
        job_info.append(i['city'])
        page_info_list.append(job_info)
    return page_info_list

def unique(old_list):
    newList = []
    for x in old_list:
        if x not in newList :
            newList.append(x)
    return newList

def main():
    connect_info = 'mysql+pymysql://{}:{}@{}:{}/{}?charset=utf8'.format("root", "123456", "localhost", "3306",
                                                                        "20_lagou")
    engine = create_engine(connect_info)
    url = ' https://www.lagou.com/jobs/positionAjax.json?needAddtionalResult=false'
    first_page = get_json(url, 1)
    total_page_count = first_page['content']['positionResult']['totalCount']
    num = get_page_num(total_page_count)
    total_info = []
    time.sleep(10)
    for num in range(1, num + 1):
        # 获取每一页的职位相关的信息
        page_data = get_json(url, num)  # 获取响应json
        jobs_list = page_data['content']['positionResult']['result']  # 获取每页的所有python相关的职位信息
        page_info = get_page_info(jobs_list)
        total_info += page_info
        print('已经爬取到第{}页,职位总数为{}'.format(num, len(total_info)))
        time.sleep(20)
    #将总数据转化为data frame再输出,然后在写入到csv格式的文件中以及本地数据库中
    df = pd.DataFrame(data=unique(total_info),
                      columns=['companyFullName', 'companyShortName', 'companySize', 'financeStage',
                               'district', 'positionName', 'workYear', 'education',
                               'salary', 'positionAdvantage', 'industryField',
                               'firstType', 'companyLabelList', 'secondType', 'city'])
    df.to_csv('bi.csv', index=True)
    print('职位信息已保存本地')
    df.to_sql(name='demo', con=engine, if_exists='append', index=False)
    print('职位信息已保存数据库')

4.3 获取租房房源信息

import requests
from pyquery import PyQuery as pq
from fake_useragent import UserAgent
import time
import pandas as pd
import random
import pymysql
from sqlalchemy import create_engine

UA = UserAgent()
headers = {
    'Accept-Language': 'zh-CN,zh;q=0.9,en;q=0.8,en-GB;q=0.7,en-US;q=0.6',
    'Cookie': 'lianjia_uuid=6383a9ce-19b9-47af-82fb-e8ec386eb872; UM_distinctid=1777521dc541e1-09601796872657-53e3566-13c680-1777521dc5547a; _smt_uid=601dfc61.4fcfbc4b; _ga=GA1.2.894053512.1612577894; _jzqc=1; _jzqckmp=1; _gid=GA1.2.1480435812.1614959594; Hm_lvt_9152f8221cb6243a53c83b956842be8a=1614049202,1614959743; csrfSecret=lqKM3_19PiKkYOfJSv6ldr_c; activity_ke_com=undefined; ljisid=6383a9ce-19b9-47af-82fb-e8ec386eb872; select_nation=1; crosSdkDT2019DeviceId=-kkiavn-2dq4ie-j9ekagryvmo7rd3-qjvjm0hxo; Hm_lpvt_9152f8221cb6243a53c83b956842be8a=1615004691; sensorsdata2015jssdkcross=%7B%22distinct_id%22%3A%221777521e37421a-0e1d8d530671de-53e3566-1296000-1777521e375321%22%2C%22%24device_id%22%3A%221777521e37421a-0e1d8d530671de-53e3566-1296000-1777521e375321%22%2C%22props%22%3A%7B%22%24latest_traffic_source_type%22%3A%22%E8%87%AA%E7%84%B6%E6%90%9C%E7%B4%A2%E6%B5%81%E9%87%8F%22%2C%22%24latest_referrer%22%3A%22https%3A%2F%2Fwww.baidu.com%2Flink%22%2C%22%24latest_referrer_host%22%3A%22www.baidu.com%22%2C%22%24latest_search_keyword%22%3A%22%E6%9C%AA%E5%8F%96%E5%88%B0%E5%80%BC%22%2C%22%24latest_utm_source%22%3A%22guanwang%22%2C%22%24latest_utm_medium%22%3A%22pinzhuan%22%2C%22%24latest_utm_campaign%22%3A%22wybeijing%22%2C%22%24latest_utm_content%22%3A%22biaotimiaoshu%22%2C%22%24latest_utm_term%22%3A%22biaoti%22%7D%7D; lianjia_ssid=7a179929-0f9a-40a4-9537-d1ddc5164864; _jzqa=1.3310829580005876700.1612577889.1615003848.1615013370.6; _jzqy=1.1612577889.1615013370.2.jzqsr=baidu|jzqct=%E9%93%BE%E5%AE%B6.jzqsr=baidu; select_city=440300; srcid=eyJ0Ijoie1wiZGF0YVwiOlwiZjdiNTI1Yjk4YjI3MGNhNjRjMGMzOWZkNDc4NjE4MWJkZjVjNTZiMWYxYTM4ZTJkNzMxN2I0Njc1MDEyY2FiOWMzNTIzZTE1ZjEyZTE3NjlkNTRkMTA2MWExZmIzMWM5YzQ3ZmQxM2M3NTM5YTQ1YzM5OWU0N2IyMmFjM2ZhZmExOGU3ZTc1YWU0NDQ4NTdjY2RiMjEwNTQyMDQzM2JiM2UxZDQwZWQwNzZjMWQ4OTRlMGRkNzdmYjExZDQwZTExNTg5NTFkODIxNWQzMzdmZTA4YmYyOTFhNWQ2OWQ1OWM4ZmFlNjc0OTQzYjA3NDBjNjNlNDYyNTZiOWNhZmM4ZDZlMDdhNzdlMTY1NmM0ZmM4ZGI4ZGNlZjg2OTE2MmU4M2MwYThhNTljMGNkODYxYjliNGYwNGM0NzJhNGM3MmVmZDUwMTJmNmEwZWMwZjBhMzBjNWE2OWFjNzEzMzM4M1wiLFwia2V5X2lkXCI6XCIxXCIsXCJzaWduXCI6XCJhYWEyMjhiNVwifSIsInIiOiJodHRwczovL20ubGlhbmppYS5jb20vY2h1enUvc3ovenVmYW5nL3BnJTdCJTdELyIsIm9zIjoid2ViIiwidiI6IjAuMSJ9',
    'Host': 'sz.lianjia.com',
    'Referer': 'https://sz.lianjia.com/zufang/',
    'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/88.0.4324.182 Safari/537.36',
}
num_page = 2


class Lianjia_Crawer:

    def __init__(self, txt_path):
        super(Lianjia_Crawer, self).__init__()
        self.file = str(txt_path)
        self.df = pd.DataFrame(
            columns=['title', 'district', 'area', 'orient', 'floor', 'price', 'city'])

    def run(self):
        '''启动脚本'''
        connect_info = 'mysql+pymysql://{}:{}@{}:{}/{}?charset=utf8'.format(
            "root", "123456", "localhost", "3366", "lagou")
        engine = create_engine(connect_info)
        for i in range(100):
            url = "https://sz.lianjia.com/zufang/pg{}/".format(str(i))
            self.parse_url(url)
            time.sleep(random.randint(2, 5))
            print('正在爬取的 url 为 {}'.format(url))
        print('爬取完毕!!!!!!!!!!!!!!')
        self.df.to_csv(self.file, encoding='utf-8')
        print('租房信息已保存至本地')
        self.df.to_sql(name='house', con=engine,
                       if_exists='append', index=False)
        print('租房信息已保存数据库')

    def parse_url(self, url):
        headers['User-Agent'] = UA.chrome
        res = requests.get(url, headers=headers)
        # 声明pq对象
        doc = pq(res.text)
        for i in doc('.content__list--item .content__list--item--main'):
            try:
                pq_i = pq(i)
                # 房屋标题
                title = pq_i('.content__list--item--title a').text()
                # 具体信息
                houseinfo = pq_i('.content__list--item--des').text()
                # 行政区
                address = str(houseinfo).split('/')[0]
                district = str(address).split('-')[0]
                # 房屋面积
                full_area = str(houseinfo).split('/')[1]
                area = str(full_area)[:-1]
                # 朝向
                orient = str(houseinfo).split('/')[2]
                # 楼层
                floor = str(houseinfo).split('/')[-1]
                # 价格
                price = pq_i('.content__list--item-price').text()
                # 城市
                city = '深圳'
                data_dict = {'title': title, 'district': district, 'area': area,
                             'orient': orient, 'floor': floor, 'price': price, 'city': city}
                self.df = self.df.append(data_dict, ignore_index=True)
                print([title, district, area, orient, floor, price, city])
            except Exception as e:
                print(e)
                print("索引提取失败,请重试!!!!!!!!!!!!!")


if __name__ == "__main__":
    # txt_path = "zufang_shenzhen.csv"
    txt_path = "test.csv"
    Crawer = Lianjia_Crawer(txt_path)
    Crawer.run()  # 启动爬虫脚本

爬取过程

在这里插入图片描述

将爬取到的数据写入到CSV格式的文件以及本地的mysql数据库中

在这里插入图片描述

其中数据库建三张表分别保存用户、租房、招聘信息数据

在这里插入图片描述

连接数据库操作

connect_info = 'mysql+pymysql://{}:{}@{}:{}/{}?charset=utf8'.format("root", "123456", "localhost", "3306","my_db")
engine = create_engine(connect_info)

5 数据可视化

使用echarts可视化展示

创建如下目录结构:

在这里插入图片描述

js 目录中为 echarts的 js 文件,大家可以在 echarts官网下载自己需要的版本,index.html 文件内容如下

#部分代码
!DOCTYPE html>
<html>
<head>
    <meta charset="utf-8"/>
    <meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1">
    <meta name="viewport" content="width=device-width, initial-scale=1, maximum-scale=1">
    <link href="./assets/images/logo.png" rel="icon">
    <title>毕业生の招聘+租房数据可视化系统</title>
    <link rel="stylesheet" href="./assets/libs/layui/css/layui.css"/>
    <link rel="stylesheet" href="./assets/module/admin.css?v=315"/>
    <!--[if lt IE 9]>
    <script src="https://oss.maxcdn.com/html5shiv/3.7.3/html5shiv.min.js"></script>
    <script src="https://oss.maxcdn.com/respond/1.4.2/respond.min.js"></script>
    <![endif]-->
</head>
<body class="layui-layout-body">
<div class="layui-layout layui-layout-admin">
    <!-- 头部 -->
    <div class="layui-header">
        <div class="layui-logo">
            <img src="./assets/images/logo.png"/>
            <cite>&nbsp;毕业生の数据可视化</cite>
        </div>
        <ul class="layui-nav layui-layout-left">
            <li class="layui-nav-item" lay-unselect>
                <a ew-event="flexible" title="侧边伸缩"><i class="layui-icon layui-icon-shrink-right"></i></a>
            </li>
            <li class="layui-nav-item" lay-unselect>
                <a ew-event="refresh" title="刷新"><i class="layui-icon layui-icon-refresh-3"></i></a>
            </li>
        </ul>
        <ul class="layui-nav layui-layout-right">
            <li class="layui-nav-item" lay-unselect>
                <a ew-event="message" title="消息">
                    <i class="layui-icon layui-icon-notice"></i>
                    <span class="layui-badge-dot"></span>
                </a>
            </li>
            <li class="layui-nav-item" lay-unselect>
                <a ew-event="note" title="便签"><i class="layui-icon layui-icon-note"></i></a>
            </li>
            <li class="layui-nav-item layui-hide-xs" lay-unselect>
                <a ew-event="fullScreen" title="全屏"><i class="layui-icon layui-icon-screen-full"></i></a>
            </li>
            <li class="layui-nav-item layui-hide-xs" lay-unselect>
                <a ew-event="lockScreen" title="锁屏"><i class="layui-icon layui-icon-password"></i></a>
            </li>
            <li class="layui-nav-item" lay-unselect>
                <a>
                    <img src="assets/images/head.png" class="layui-nav-img">
                    <cite>zz</cite>
                </a>
                <dl class="layui-nav-child">
                    <dd lay-unselect>
                        <a ew-href="page/template/user-info.html">个人中心</a>
                    </dd>
                    <dd lay-unselect>
                        <a ew-event="psw">修改密码</a>
                    </dd>
                    <hr>
                    <dd lay-unselect>
                        <a ew-event="logout" data-url="page/template/login.html">退出</a>
                    </dd>
                </dl>
            </li>
            <li class="layui-nav-item" lay-unselect>
                <a ew-event="theme" title="主题"><i class="layui-icon layui-icon-more-vertical"></i></a>
            </li>
        </ul>
    </div>

6 实现效果

6.1 招聘数据和租房数据概况

可根据学习和职位进行筛选查询

在这里插入图片描述

6.2 个人中心

可修改基本信息,密码等

在这里插入图片描述

6.3 招聘信息可视化

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

6.4 招聘信息城市之间对比图

在这里插入图片描述

6.5 租房数据可视化

在这里插入图片描述

6.6 薪资预测

在这里插入图片描述


7 最后

;