Bootstrap

常见考研函数泰勒公式展开(清晰)

e x = 1 + x + 1 2 ! x 2 + ⋯ + 1 n ! x n + O ( x n ) \mathrm{e^x=1+x+\frac1{2!}x^2+ \cdots+\frac1{n!}x^n +O{(x^n)}} ex=1+x+2!1x2++n!1xn+O(xn)

l n ( 1 + x ) = x − 1 2 x 2 + 1 3 x 3 + ⋯ + ( − 1 ) n n + 1 x n + 1 + O ( x n ) \mathrm{ln(1+x)=x-\frac12x^2+\frac13x^3+\cdots+\frac{(-1)^n}{n+1}x^{n+1}+O{(x^n)}} ln(1+x)=x21x2+31x3++n+1(1)nxn+1+O(xn)

( 1 + x ) a = 1 + α x + α ( α − 1 ) 2 ! x 2 + ⋯ + α ( α − 1 ) ⋯ ( α − n + 1 ) n ! x n + O ( x n ) \mathrm{(1+x)^a=1+\alpha x+\frac{\alpha(\alpha-1)}{2!}x^2+\cdots+\frac{\alpha(\alpha-1)\cdots(\alpha-n+1)}{n!}x^n}+O{(x^n)} (1+x)a=1+αx+2!α(α1)x2++n!α(α1)(αn+1)xn+O(xn)

1 1 − x   = 1 + x + x 2 + x 3 + ⋯ + x n + O ( x n ) \mathrm{\frac1{1-x}~=1+x+x^2+x^3+\cdots +x^n + O{(x^n)} } 1x1 =1+x+x2+x3++xn+O(xn)

1 1 + x = 1 − x + x 2 − x 3 + ⋯ + ( − 1 ) n x n + O ( x n ) \mathrm{\frac1{1+x}=1-x+x^2-x^3+\cdots +(-1)^\mathrm{n}\mathrm{x^n}+O{(x^n)} } 1+x1=1x+x2x3++(1)nxn+O(xn)

sin ⁡ x = x − 1 3 ! x 3 + 1 5 ! x 5 + ⋯ + ( − 1 ) n ( 2 n + 1 ) ! x 2 n + 1 + O ( x 2 n + 1 ) \mathrm{\sin x=x-\frac1{3!}x^3+\frac1{5!}x^5+\cdots+ \frac{(-1)^n}{(2n+1)!}x^{2n+1}+O(x^{2n+1})} sinx=x3!1x3+5!1x5++(2n+1)!(1)nx2n+1+O(x2n+1)

a r c s i n   x = x + 1 6 x 3 + ⋯ + ( 2 n ) ! 4 n ( n ! ) 2 ( 2 n + 1 ) x 2 n + 1 + O ( x 2 n + 1 ) \mathrm{arcsin~x=x+\frac16x^3+\cdots+\frac{(2n)!}{4^n(n!)^2(2n+1)}x^{2n+1}+O(x^{2n+1})} arcsin x=x+61x3++4n(n!)2(2n+1)(2n)!x2n+1+O(x2n+1)

tan ⁡ x = x + 1 3 x 3 + 2 15 x 5 + ⋯ + B 2 n ( − 4 ) n ( 1 − 4 n ) ( 2 n ) ! x 2 n − 1 + O ( x 2 n − 1 ) \tan\mathrm{x}=\mathrm{x}+\frac13\mathrm{x}^3+\frac2{15}\mathrm{x}^5+ \cdots+\frac{\mathrm{B}_{2\mathrm{n}}\left(-4\right)^\mathrm{n}\left(1-4^\mathrm{n}\right)}{\left(2\mathrm{n}\right)!}\mathrm{x}^{2\mathrm{n}-1}+O(x^{2n-1}) tanx=x+31x3+152x5++(2n)!B2n(4)n(14n)x2n1+O(x2n1)

arctan ⁡ x = x − 1 3 x 3 + 1 5 x 5 + ⋯ + ( − 1 ) n 2 n + 1 x 2 n + 1 + O ( x 2 n + 1 ) \arctan\mathrm{x=x-\frac13x^3+\frac15x^5+\cdots+\frac{(-1)^n}{2n+1}x^{2n+1}+O(x^{2n+1})} arctanx=x31x3+51x5++2n+1(1)nx2n+1+O(x2n+1)

cos ⁡ x = 1 − 1 2 ! x 2 + 1 4 ! x 4 + ⋯ + ( − 1 ) n ( 2 n ) ! x 2 n + O ( x 2 n ) \cos\mathrm{x=1-\frac1{2!}x^2+\frac1{4!}x^4+\cdots}+\frac{(-1)^n}{(2n)!}x^{2n}+O(x^{2n}) cosx=12!1x2+4!1x4++(2n)!(1)nx2n+O(x2n)

;