Bootstrap

Waymo自动驾驶数据集介绍与使用教程


本文将对Waymo自动驾驶数据集(Waymo Open Dataset)进行介绍。

论文链接为:https://arxiv.org/abs/1912.04838v7

项目链接为:https://github.com/waymo-research/waymo-open-dataset

数据集链接为:https://waymo.com/open


1. 自动驾驶感知可扩展性:Waymo开放数据集

这里首先对论文进行解读。

1.1 Abstract

整个数据集包含1150个场景,每个场景时长为20秒,且LiDAR和Camera是经过同步和标定处理过的。 对图像和激光雷达的bounding box进行了仔细的标注,并在各帧之间使用了一致的标识符


1.2 Introduction

整个数据集包含约1200万个LiDAR注释框和约1200万个图像注释框,从而产生了约113k个LiDAR物体轨迹和约25万个图像轨迹。整个数据集划分为1000个训练集和150个测试集


1.3 Waymo Open Dataset
  • 1)Sensor Specifications

数据收集使用五个LiDAR和五个高分辨率针孔相机完成。 限制了LiDAR数据范围,并且每个激光脉冲有两个回波(双回波)。相机图像是通过卷帘快门扫描捕获的,其中确切的扫描模式可能因场景而异。 所有相机图像都将进行降采样并从原始图像中裁剪出来。

下图和表格是传感器安装布置图和规格介绍。

在这里插入图片描述在这里插入图片描述

在这里插入图片描述


  • 2)Coordinate Systems

整个数据集坐标系统遵守右手法则全局坐标系为ENU坐标:Up(z)轴与重力方向一直,向上为正;East(x)沿着纬度指向正东,North(y)指向北极。车辆坐标系随汽车移动,x轴指向前方,y轴指向左侧,z轴向上为正。传感器坐标可以通过旋转矩阵从车辆坐标获得,可以把这看作是外参矩阵。

图像坐标是二维坐标,x轴表示图像宽度,y轴表示图像高度,图像左上角为坐标原点。激光雷达得到的点的坐标可以表示为 ( x , y , z ) (x,y,z) (x,y,z),转换成距离,方位角,倾角公式为:

 range  = x 2 + y 2 + z 2  azimuth  = atan ⁡ 2 ( y , x )  inclination  = atan ⁡ 2 ( z , x 2 + y 2 ) \begin{aligned}\text { range } &=\sqrt{x^{2}+y^{2}+z^{2}} \\\text { azimuth } &=\operatorname{atan} 2(y, x) \\\text { inclination } &=\operatorname{atan} 2\left(z, \sqrt{x^{2}+y^{2}}\right) \end{aligned}  range  azimuth  inclination =x2+y2+z2 =atan2(y,x)=atan2(z,x2+y2 )


  • 3)Ground Truth Labels

数据集中对汽车、行人、交通标志、自行车人员进行了详细标注。对于激光雷达数据,将每一个物体标注为7自由度3D bbox: ( c x , c y , c z , l , w , h , θ ) (cx,cy,cz,l,w,h,\theta) (cx,cy,cz,l,w,h,θ)。其中 c x , c y , c z cx,cy,cz cx,cy,cz表示为bbox中心坐标, l , w , h l,w,h l,w,h表示为物体长宽高, θ \theta θ表示为物体偏航角,此外对于每一个物体还标注了一个唯一的追踪ID编号。

图像标注中将每一个物体标注为4自由度2D bbox: ( c x , c y , l , w ) (cx,cy,l,w) (cx,cy,l,w)。其中 c x , c y cx,cy cx,cy表示为bbox中心图像坐标, l l l表示为物体长度, w w w表示为物体宽度。

此外,还将标注物体划分为了两个难度:LEVEL_2为物体对应激光雷达点数少于5个,其余则划分为LEVEL_1
在这里插入图片描述


  • 4)Sensor Data

LiDAR 数据在数据集中被编码为距离图像,每个 LiDAR 返回一张; 提供前两次回波的数据。 距离图像格式类似于卷帘快门相机图像,从左到右逐列填充。 每个距离图像像素对应一个 LiDAR 返回波。 高度和宽度由 LiDAR 传感器框架中倾角和方位角的分辨率决定。

在这里插入图片描述
此外,对于图像和激光雷达, 投影如下:
在这里插入图片描述


  • 5)Dataset Analysis

下面两张表格给出了数据集分布情况,不同城市,不同天气,不同类别目标的统计情况。

在这里插入图片描述在这里插入图片描述

1.4 Tasks

数据集任务划分为2D和3D物体检测和追踪任务,训练集场景有798个,验证集场景有202个,测试集场景有150个。


1.5 Experiments

对于3D物体检测,Waymo提供了一个Baseline,其使用的检测方法是PointPillars。对于2D物体检测,使用了Faster R-CNN作为baseline,对于3D物体追踪,使用了AB3DMOT作为Baseline。

下面几张表格给出了Baseline结果:行人和汽车检测和追踪结果,域适应检测结果,数据集大小对检测结果的影响。

Baseline APH and AP for vehicles and pedestriansBaseline multi-object tracking metrics for vehicles and pedestrians
在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述

2. Waymo Open Dataset Tutorial

下面介绍Waymo官放提供的数据使用教程,以下程序是在Colab上运行的。

2.1 Install waymo_open_dataset package

首先是安装数据包:

!rm -rf waymo-od > /dev/null
!git clone https://github.com/waymo-research/waymo-open-dataset.git waymo-od
!cd waymo-od && git branch -a
!cd waymo-od && git checkout remotes/origin/master
!pip3 install --upgrade pip

!pip3 install waymo-open-dataset-tf-2-1-0==1.2.0

然后是导入需要用到的库:

import os
import tensorflow.compat.v1 as tf
import math
import numpy as np
import itertools

tf.enable_eager_execution()

from waymo_open_dataset.utils import range_image_utils
from waymo_open_dataset.utils import transform_utils
from waymo_open_dataset.utils import  frame_utils
from waymo_open_dataset import dataset_pb2 as open_dataset

2.2 Read one frame

数据集中的每一个文件包含帧序列数据,按照时间戳排列,这里提取了两帧来演示:

FILENAME = '/content/waymo-od/tutorial/frames'
dataset = tf.data.TFRecordDataset(FILENAME, compression_type='')
for data in dataset:
	frame = open_dataset.Frame()
	frame.ParseFromString(bytearray(data.numpy()))
	break

(range_images, camera_projections, range_image_top_pose) = frame_utils.parse_range_image_and_camera_projection(frame)

可以查看每一帧包含的信息:

print(frame.context)

2.3 Visualize Camera Images and Camera Labels

图片数据及其标签可视化:

import matplotlib.pyplot as plt
import matplotlib.patches as patches

def show_camera_image(camera_image, camera_labels, layout, cmap=None):
	 """Show a camera image and the given camera labels."""
	
	 ax = plt.subplot(*layout)
	
	 # Draw the camera labels.
	 for camera_labels in frame.camera_labels:
	 	# Ignore camera labels that do not correspond to this camera.
	    if camera_labels.name != camera_image.name:
	    	continue
	
	    # Iterate over the individual labels.
	    for label in camera_labels.labels:
	    	# Draw the object bounding box.
	     	ax.add_patch(patches.Rectangle(xy=(label.box.center_x - 0.5 * label.box.length,
	           							   label.box.center_y - 0.5 * label.box.width),
	       							       width=label.box.length,
	       								   height=label.box.width,
	       							       linewidth=1,
	       								   edgecolor='red',
	       								   facecolor='none'))

	 # Show the camera image.
	 plt.imshow(tf.image.decode_jpeg(camera_image.image), cmap=cmap)
	 plt.title(open_dataset.CameraName.Name.Name(camera_image.name))
	 plt.grid(False)
	 plt.axis('off')

plt.figure(figsize=(25, 20))

for index, image in enumerate(frame.images):
	show_camera_image(image, frame.camera_labels, [3, 3, index+1])

在这里插入图片描述


2.4 Visualize Range Images

Range图片可视化:

plt.figure(figsize=(64, 20))
def plot_range_image_helper(data, name, layout, vmin = 0, vmax=1, cmap='gray'):
	"""Plots range image.
	
	Args:
	  data: range image data
	  name: the image title
	  layout: plt layout
	  vmin: minimum value of the passed data
	  vmax: maximum value of the passed data
	  cmap: color map
	"""
	plt.subplot(*layout)
	plt.imshow(data, cmap=cmap, vmin=vmin, vmax=vmax)
	plt.title(name)
	plt.grid(False)
	plt.axis('off')

def get_range_image(laser_name, return_index):
	"""Returns range image given a laser name and its return index."""
	return range_images[laser_name][return_index]

def show_range_image(range_image, layout_index_start = 1):
	"""Shows range image.

	Args:
	  range_image: the range image data from a given lidar of type MatrixFloat.
	  layout_index_start: layout offset
	"""
	range_image_tensor = tf.convert_to_tensor(range_image.data)
	range_image_tensor = tf.reshape(range_image_tensor, range_image.shape.dims)
	lidar_image_mask = tf.greater_equal(range_image_tensor, 0)
	range_image_tensor = tf.where(lidar_image_mask, range_image_tensor,
	                              tf.ones_like(range_image_tensor) * 1e10)
	range_image_range = range_image_tensor[...,0] 
	range_image_intensity = range_image_tensor[...,1]
	range_image_elongation = range_image_tensor[...,2]
	plot_range_image_helper(range_image_range.numpy(), 'range',
	                 [8, 1, layout_index_start], vmax=75, cmap='gray')
	plot_range_image_helper(range_image_intensity.numpy(), 'intensity',
	                 [8, 1, layout_index_start + 1], vmax=1.5, cmap='gray')
	plot_range_image_helper(range_image_elongation.numpy(), 'elongation',
	                 [8, 1, layout_index_start + 2], vmax=1.5, cmap='gray')
frame.lasers.sort(key=lambda laser: laser.name)
show_range_image(get_range_image(open_dataset.LaserName.TOP, 0), 1)
show_range_image(get_range_image(open_dataset.LaserName.TOP, 1), 4)

在这里插入图片描述


2.5 Point Cloud Conversion and Visualization

点云转换和可视化:

points, cp_points = frame_utils.convert_range_image_to_point_cloud(frame, range_images, camera_projections, range_image_top_pose)
points_ri2, cp_points_ri2 = frame_utils.convert_range_image_to_point_cloud(frame, range_images, camera_projections, range_image_top_pose, ri_index=1)

# 3d points in vehicle frame.
points_all = np.concatenate(points, axis=0)
points_all_ri2 = np.concatenate(points_ri2, axis=0)
# camera projection corresponding to each point.
cp_points_all = np.concatenate(cp_points, axis=0)
cp_points_all_ri2 = np.concatenate(cp_points_ri2, axis=0)

'''
print(points_all.shape)
print(cp_points_all.shape)
print(points_all[0:2])
for i in range(5):
	print(points[i].shape)
	print(cp_points[i].shape)

print(points_all_ri2.shape)
print(cp_points_all_ri2.shape)
print(points_all_ri2[0:2])
for i in range(5):
	print(points_ri2[i].shape)
	print(cp_points_ri2[i].shape)
'''
from IPython.display import Image, display
display(Image('/content/waymo-od/tutorial/3d_point_cloud.png'))

在这里插入图片描述


2.6 Visualize Camera Projection

点云数据投影:

images = sorted(frame.images, key=lambda i:i.name)
cp_points_all_concat = np.concatenate([cp_points_all, points_all], axis=-1)
cp_points_all_concat_tensor = tf.constant(cp_points_all_concat)

# The distance between lidar points and vehicle frame origin.
points_all_tensor = tf.norm(points_all, axis=-1, keepdims=True)
cp_points_all_tensor = tf.constant(cp_points_all, dtype=tf.int32)

mask = tf.equal(cp_points_all_tensor[..., 0], images[0].name)

cp_points_all_tensor = tf.cast(tf.gather_nd(
    cp_points_all_tensor, tf.where(mask)), dtype=tf.float32)
points_all_tensor = tf.gather_nd(points_all_tensor, tf.where(mask))

projected_points_all_from_raw_data = tf.concat(
    [cp_points_all_tensor[..., 1:3], points_all_tensor], axis=-1).numpy()

def rgba(r):
	"""Generates a color based on range.
	
	Args:
	  r: the range value of a given point.
	Returns:
	  The color for a given range
	"""
	c = plt.get_cmap('jet')((r % 20.0) / 20.0)
	c = list(c)
	c[-1] = 0.5  # alpha
	return c

def plot_image(camera_image):
	"""Plot a cmaera image."""
	plt.figure(figsize=(20, 12))
	plt.imshow(tf.image.decode_jpeg(camera_image.image))
	plt.grid("off")

def plot_points_on_image(projected_points, camera_image, rgba_func,
                         point_size=5.0):
	"""Plots points on a camera image.
	
	Args:
	projected_points: [N, 3] numpy array. The inner dims are
	[camera_x, camera_y, range].
	camera_image: jpeg encoded camera image.
	rgba_func: a function that generates a color from a range value.
	point_size: the point size.
	
	"""
	plot_image(camera_image)
	
	xs = []
	ys = []
	colors = []
	
	for point in projected_points:
	xs.append(point[0])  # width, col
	ys.append(point[1])  # height, row
	colors.append(rgba_func(point[2]))
	
	plt.scatter(xs, ys, c=colors, s=point_size, edgecolors="none")

plot_points_on_image(projected_points_all_from_raw_data,
                     images[0], rgba, point_size=5.0)

在这里插入图片描述

;