一、如何直接将多模态数据传输给模型
在这里,我们演示了如何将多模式输入直接传递给模型。对于其他的支持多模态输入的模型提供者,langchain 在类中提供了内在逻辑来转化为期待的格式。
传入图像最常用的方法是将其作为字节字符串传入。这应该适用于大多数模型集成。
import base64
import httpx
image_url = "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg"
image_data = base64.b64encode(httpx.get(image_url).content).decode("utf-8")
message = HumanMessage(
content=[
{"type": "text", "text": "describe the weather in this image"},
{
"type": "image_url",
"image_url": {"url": f"data:image/jpeg;base64,{image_data}"},
},
],
)
response = model.invoke([message]) # 自己定义一个 model
print(response.content)
"""
The weather in the image appears to be clear and pleasant. The sky is mostly blue with scattered, light clouds, suggesting a sunny day with minimal cloud cover. There is no indication of rain or strong winds, and the overall scene looks bright and calm. The lush green grass and clear visibility further indicate good weather conditions.
"""
我们可以直接在 “image_URL” 类型的内容块中提供图像 URL。但是注意,只有一些模型提供程序支持此功能。
message = HumanMessage(
content=[
{"type": "text", "text": "describe the weather in this image"},
{"type": "image_url", "image_url": {"url": image_url}},
],
)
response = model.invoke([message])
print(response.content)
我们也可以传多个图片。
message = HumanMessage(
content=[
{"type": "text", "text": "are these two images the same?"},
{"type": "image_url", "image_url": {"url": image_url}},
{"type": "image_url", "image_url": {"url": image_url}},
],
)
response = model.invoke([message])
print(response.content)
"""
Yes, the two images are the same. They both depict a wooden boardwalk extending through a grassy field under a blue sky with light clouds. The scenery, lighting, and composition are identical.
"""
二、如何使用 mutimodal prompts
在这里,我们将描述一下怎么使用 prompt templates 来为模型格式化 multimodal imputs。
import base64
import httpx
from langchain_core.prompts import ChatPromptTemplate
image_url = "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg"
image_data = base64.b64encode(httpx.get(image_url).content).decode("utf-8")
prompt = ChatPromptTemplate.from_messages(
[
("system", "Describe the image provided"),
(
"user",
[
{
"type": "image_url",
"image_url": {"url": "data:image/jpeg;base64,{image_data}"},
}
],
),
]
)
chain = prompt | model
response = chain.invoke({"image_data": image_data})
print(response.content)
"""
The image depicts a sunny day with a beautiful blue sky filled with scattered white clouds. The sky has varying shades of blue, ranging from a deeper hue near the horizon to a lighter, almost pale blue higher up. The white clouds are fluffy and scattered across the expanse of the sky, creating a peaceful and serene atmosphere. The lighting and cloud patterns suggest pleasant weather conditions, likely during the daytime hours on a mild, sunny day in an outdoor natural setting.
"""
我们也可以给模型传入多个图片。
prompt = ChatPromptTemplate.from_messages(
[
("system", "compare the two pictures provided"),
(
"user",
[
{
"type": "image_url",
"image_url": {"url": "data:image/jpeg;base64,{image_data1}"},
},
{
"type": "image_url",
"image_url": {"url": "data:image/jpeg;base64,{image_data2}"},
},
],
),
]
)
chain = prompt | model
response = chain.invoke({"image_data1": image_data, "image_data2": image_data})
print(response.content)
"""
The two images provided are identical. Both images feature a wooden boardwalk path extending through a lush green field under a bright blue sky with some clouds. The perspective, colors, and elements in both images are exactly the same.
"""