Bootstrap

一图胜千言!这10种可视化技术你必须知道

全文共4549字,预计学习时长9分钟

a6c9852d5483a4074ff4a9e87424f65d28f.jpg

图片来源:Willian Justen deVasconcellos on Unsplash

相比于浩如烟海的数据表格,大部分人还是更喜欢视觉资料,这一点已不足为奇。也是出于这个原因,人们通常才会在学术论文的前几页加上一张图表,并且清楚地标记上各种注释。

当数据科学家应用可视化技术后,数据的分布情况以及分析的重点将清楚而直观地展现在他们眼前。这种感觉异常奇妙!

数据可视化技术主要有两大功能:

1. 将分析结果更加清晰地展现出来。

2. 将数据有效组织起来,利于提出新的猜想,或引导某一项目下一步的走向。

本文将会介绍到十种可视化技术。以后,无论你是想让大家认可理论,还是为了规划项目的下一步计划,这些可视化方法都能帮助你分析数据。

3315291252dccfac8db6715d9542f61e8a4.jpg

1. 直方图

首先来了解一下直方图。通过直方图,可以纵观某个数值变量所有可能的值,以及其出现的频率。直方图看似简单,实际上功能却很强大。有时,直方图也被称为频数分布图。

从视觉效果上来说,需要画一个频率图,把相关变量排布在X轴上,而Y轴显示的则是每个值出现的频率。

例如,假设某个公司为了使自己的智能恒温器更加畅销,于是采取了一种营销策略,即根据顾客邮政编码的不同来提供相应的折扣。这时,通过绘制与恒温器折扣相关的直方图,人们就能更好地了解各个值的范围,以及它们各自出现的频率。

08428db08e8a9c101cf996708ab9a9fb1a2.jpg

恒温器折扣直方图(单位:美元)

从上图可以发现,恒温器的折扣大约有半数介于100到120美元之间。而折扣低于60美元或者高于140美元的邮编,都只存在一小部分。

资料来源:https://ibm.box.com/s/6fltz5ilap8pbwzu2tt1yxil6ldosc9d

9fdac509e8ac01b128dd2cf3668a2b03ebe.jpg

2. 条形图与饼状图

上文所讲的直方图通常用于处理数值变量,而本段所涉及的条形图与饼状图则主要适用于类别变量。如果要分析变量分布,并且这些变量的值又比较固定,比如只存在低、正常、高,是、否,或者常规驱动、电驱动、混合驱动等有限选项,那么这个时候最适合的选择就是条形图或者饼状图。

那么到底是选条形图还是饼状图呢?其实这两种方法都值得一试,然后再看看哪个的视觉效果会更好一些。但是在可能选项比较少的情况下,饼状图还是更胜一筹。

如果数据类别过多的话,无论是条形图还是饼状图,可视化的效果都不会太好。在这种情况下,可以考虑只对前几项最大值进行可

;