Bootstrap

CMU 11-785 L21 Boltzmann machines2

The Hopfield net as a distribution

The Helmholtz Free Energy of a System

  • At any time, the probability of finding the system in state s s s at temperature T T T is P T ( s ) P_T(s) PT(s)

  • At each state it has a potential energy E s E_s Es

  • The internal energy of the system, representing its capacity to do work, is the average

    • U T = ∑ S P T ( s ) E S U_{T}=\sum_{S} P_{T}(s) E_{S} UT=SPT(s)ES
  • The capacity to do work is counteracted by the internal disorder of the system, i.e. its entropy

    • H T = − ∑ S P T ( s ) log ⁡ P T ( s ) H_{T}=-\sum_{S} P_{T}(s) \log P_{T}(s) HT=SPT(s)logPT(s)
  • The Helmholtz free energy of the system measures the useful work derivable from it and combines the two terms

    • F T = U T + k T H T F_{T}=U_{T}+k T H_{T} FT=UT+kTHT
    • = ∑ S P T ( s ) E S − k T ∑ S P T ( s ) log ⁡ P T ( s ) =\sum_{S} P_{T}(s) E_{S}-k T \sum_{S} P_{T}(s) \log P_{T}(s) =SPT(s)ESkTSPT(s)logPT(s)
  • The probability distribution of the states at steady state is known as the Boltzmann distribution

    • Minimizing this w.r.t P T ( s ) P_T(s) PT(s), we get

    • P T ( s ) = 1 Z exp ⁡ ( − E S k T ) P_{T}(s)=\frac{1}{Z} \exp \left(\frac{-E_{S}}{k T}\right) PT(s)=Z1exp(kTES)

    • Z Z Z is a normalizing constant

Hopfield net as a distribution

  • E ( S ) = − ∑ i < j w i j s i s j − b i s i E(S)=-\sum_{i<j} w_{i j} s_{i} s_{j}-b_{i} s_{i} E(S)=i<jwijsisjbisi
  • P ( S ) = exp ⁡ ( − E ( S ) ) ∑ S ′ exp ⁡ ( − E ( S ′ ) ) P(S)=\frac{\exp (-E(S))}{\sum_{S^{\prime}} \exp \left(-E\left(S^{\prime}\right)\right)} P(S)=Sexp(E(S))exp(E(S))
  • The stochastic Hopfield network models a probability distribution over states
  • It is a generative model: generates states according to P ( S ) P(S) P(S)

The field at a single node

  • Let’s take one node as example

  • Let S S S and S ′ S^\prime S be the states with the +1 and -1 states

    • P ( S ) = P ( s i = 1 ∣ s j ≠ i ) P ( s j ≠ i ) P(S)=P\left(s_{i}=1 \mid s_{j \neq i}\right) P\left(s_{j \neq i}\right) P(S)=P(si=1sj=i)P(sj=i)
    • P ( S ′ ) = P ( s i = − 1 ∣ s j ≠ i ) P ( s j ≠ i ) P\left(S^{\prime}\right)=P\left(s_{i}=-1 \mid s_{j \neq i}\right) P\left(s_{j \neq i}\right) P(S)=P(si=1sj=i)P(sj=i)
    • log ⁡ P ( S ) − log ⁡ P ( S ′ ) = log ⁡ P ( s i = 1 ∣ s j ≠ i ) − log ⁡ P ( s i = − 1 ∣ s j ≠ i ) \log P(S)-\log P\left(S^{\prime}\right)=\log P\left(s_{i}=1 \mid s_{j \neq i}\right)-\log P\left(s_{i}=-1 \mid s_{j \neq i}\right) logP(S)logP(S)=logP(si=1sj=i)logP(si=1sj=i)
    • log ⁡ P ( S ) − log ⁡ P ( S ′ ) = log ⁡ P ( s i = 1 ∣ s j ≠ i ) 1 − P ( s i = 1 ∣ s j ≠ i ) \log P(S)-\log P\left(S^{\prime}\right)=\log \frac{P\left(s_{i}=1 \mid s_{j \neq i}\right)}{1-P\left(s_{i}=1 \mid s_{j \neq i}\right)} logP(S)logP(S)=log1P(si=1sj=i)P(si=1sj=i)
  • log ⁡ P ( S ) = − E ( S ) + C \log P(S)=-E(S)+C logP(S)=E(S)+C

    • E ( S ) = − 1 2 ( E not  i + ∑ j ≠ i w i j s j + b i ) E(S)=-\frac{1}{2}\left(E_{\text {not } i}+\sum_{j \neq i} w_{i j} s_{j}+b_{i}\right) E(S)=21(Enot i+j=iwijsj+bi)
    • E ( S ′ ) = − 1 2 ( E not  i − ∑ j ≠ i w i j s j − b i ) E\left(S^{\prime}\right)=-\frac{1}{2}\left(E_{\text {not } i}-\sum_{j \neq i} w_{i j} s_{j}-b_{i}\right) E(S)=21(Enot ij=iwijsjbi)
  • log ⁡ P ( S ) − log ⁡ P ( S ′ ) = E ( S ′ ) − E ( S ) = ∑ j ≠ i w i j S j + b i \log P(S)-\log P\left(S^{\prime}\right)=E\left(S^{\prime}\right)-E(S)=\sum_{j \neq i} w_{i j} S_{j}+b_{i} logP(S)logP(S)=E(S)E(S)=j=iwijSj+bi

    • log ⁡ ( P ( s i = 1 ∣ s j ≠ i ) 1 − P ( s i = 1 ∣ s j ≠ i ) ) = ∑ j ≠ i w i j s j + b i \log \left(\frac{P\left(s_{i}=1 \mid s_{j \neq i}\right)}{1-P\left(s_{i}=1 \mid s_{j \neq i}\right)}\right)=\sum_{j \neq i} w_{i j} s_{j}+b_{i} log(1P(si=1sj=i)P(si=1sj=i))=j=iwijsj+bi

    • P ( s i = 1 ∣ s j ≠ i ) = 1 1 + e − ( ∑ j ≠ i w i j s j + b i ) P\left(s_{i}=1 \mid s_{j \neq i}\right)=\frac{1}{1+e^{-\left(\sum_{j \neq i} w_{i j} s_{j}+b_{i}\right)}} P(si=1sj=i)=1+e(j=iwijsj+bi)1

  • The probability of any node taking value 1 given other node values is a logistic

Redefining the network

  • Redefine a regular Hopfield net as a stochastic system
  • Each neuron is now a stochastic unit with a binary state s i s_i si, which can take value 0 or 1 with a probability that depends on the local field
    • z i = ∑ j w i j s j + b i z_{i}=\sum_{j} w_{i j} s_{j}+b_{i} zi=jwijsj+bi
    • P ( s i = 1 ∣ s j ≠ i ) = 1 1 + e − z i P\left(s_{i}=1 \mid s_{j \neq i}\right)=\frac{1}{1+e^{-z_{i}}} P(si=1sj=i)=1+ezi1
  • Note
    • The Hopfield net is a probability distribution over binary sequences (Boltzmann distribution)
    • The conditional distribution of individual bits in the sequence is a logistic
  • The evolution of the Hopfield net can be made stochastic
    • Instead of deterministically responding to the sign of the local field, each neuron responds probabilistically
  • Recall patterns

在这里插入图片描述

The Boltzmann Machine

  • The entire model can be viewed as a generative model
  • Has a probability of producing any binary vector y y y
    • E ( y ) = − 1 2 y T W y E(\mathbf{y})=-\frac{1}{2} \mathbf{y}^{T} \mathbf{W} \mathbf{y} E(y)=21yTWy
    • P ( y ) = Cexp ⁡ ( − E ( y ) T ) P(\mathbf{y})=\operatorname{Cexp}\left(-\frac{E(\mathbf{y})}{T}\right) P(y)=Cexp(TE(y))
  • Training a Hopfield net: Must learn weights to “remember” target states and “dislike” other states
    • Must learn weights to assign a desired probability distribution to states
    • Just maximize likelihood

Maximum Likelihood Training

  • log ⁡ ( P ( S ) ) = ( ∑ i < j w i j s i s j ) − log ⁡ ( ∑ S ′ exp ⁡ ( ∑ i < j w i j s i ′ s j ′ ) ) \log (P(S))=\left(\sum_{i<j} w_{i j} s_{i} s_{j}\right)-\log \left(\sum_{S^{\prime}} \exp \left(\sum_{i<j} w_{i j} s_{i}^{\prime} s_{j}^{\prime}\right)\right) log(P(S))=(i<jwijsisj)log(Sexp(i<jwijsisj))

  • L = 1 N ∑ S ∈ S log ⁡ ( P ( S ) ) = 1 N ∑ S ( ∑ i < j w i j s i s j ) − log ⁡ ( ∑ S ′ exp ⁡ ( ∑ i < j w i j s i ′ s j ′ ) ) \mathcal{L}=\frac{1}{N} \sum_{S \in \mathbf{S}} \log (P(S)) =\frac{1}{N} \sum_{S}\left(\sum_{i<j} w_{i j} s_{i} s_{j}\right)-\log \left(\sum_{S^{\prime}} \exp \left(\sum_{i<j} w_{i j} s_{i}^{\prime} s_{j}^{\prime}\right)\right) L=N1SSlog(P(S))=N1S(i<jwijsisj)log(Sexp(i<jwijsisj))

  • Second term derivation

    • d log ⁡ ( ∑ S ′ exp ⁡ ( ∑ i < j w i j s i ′ s j ′ ) ) d w i j = ∑ S ′ exp ⁡ ( ∑ i < j w i j s i ′ s j ′ ) ∑ S ′ exp ⁡ ( ∑ i < j w i j s i ′ ′ s j ′ ) s i ′ s j ′ \frac{d \log \left(\sum_{S^{\prime}} \exp \left(\sum_{i<j} w_{i j} s_{i}^{\prime} s_{j}^{\prime}\right)\right)}{d w_{i j}}=\sum_{S^{\prime}} \frac{\exp \left(\sum_{i<j} w_{i j} s_{i}^{\prime} s_{j}^{\prime}\right)}{\sum_{S^{\prime}} \exp \left(\sum_{i<j} w_{i j} s_{i}^{\prime \prime} s_{j}^{\prime}\right)} s_{i}^{\prime} s_{j}^{\prime} dwijdlog(Sexp(i<jwijsisj))=SSexp(i<jwijsisj)exp(i<jwijsisj)sisj
    • d log ⁡ ( ∑ S ′ exp ⁡ ( ∑ i < j w i j s i ′ s j ′ ) ) d w i j = ∑ S ′ P ( S ′ ) s i ′ s j ′ \frac{d \log \left(\sum_{S^{\prime}} \exp \left(\sum_{i<j} w_{i j} s_{i}^{\prime} s_{j}^{\prime}\right)\right)}{d w_{i j}}=\sum_{S_{\prime}} P\left(S^{\prime}\right) s_{i}^{\prime} s_{j}^{\prime} dwijdlog(Sexp(i<jwijsisj))=SP(S)sisj
    • The second term is simply the expected value of s i S j s_iS_j siSj, over all possible values of the state
    • We cannot compute it exhaustively, but we can compute it by sampling!
  • Overall gradient ascent rule

    • w i j = w i j + η d ⟨ log ⁡ ( P ( S ) ) ⟩ d w i j w_{i j}=w_{i j}+\eta \frac{d\langle\log (P(\mathbf{S}))\rangle}{d w_{i j}} wij=wij+ηdwijdlog(P(S))
  • Overall Training

    • Initialize weights
    • Let the network run to obtain simulated state samples
    • Compute gradient and update weights
    • Iterate
  • Note the similarity to the update rule for the Hopfield network

    • The only difference is how we got the samples

Adding Capacity

在这里插入图片描述

  • Visible neurons

    • The neurons that store the actual patterns of interest
  • Hidden neurons

    • The neurons that only serve to increase the capacity but whose actual values are not important
  • We could have multiple hidden patterns coupled with any visible pattern

    • These would be multiple stored patterns that all give the same visible output
  • We are interested in the marginal probabilities over visible bits

    • S = ( V , H ) S=(V,H) S=(V,H)
    • P ( S ) = exp ⁡ ( − E ( S ) ) ∑ S ′ exp ⁡ ( − E ( S ′ ) ) P(S)=\frac{\exp (-E(S))}{\sum_{S^{\prime}} \exp \left(-E\left(S^{\prime}\right)\right)} P(S)=Sexp(E(S))exp(E(S))
    • P ( S ) = P ( V , H ) P(S) = P(V,H) P(S)=P(V,H)
    • P ( V ) = ∑ H P ( S ) P(V)=\sum_{H} P(S) P(V)=HP(S)
  • Train to maximize probability of desired patterns of visible bits

    • E ( S ) = − ∑ i < j w i j s i s j E(S)=-\sum_{i<j} w_{i j} s_{i} s_{j} E(S)=i<jwijsisj
    • P ( S ) = exp ⁡ ( ∑ i < j w i j s i s j ) ∑ S ′ exp ⁡ ( ∑ i < j w i j s i ′ s j ′ ) P(S)=\frac{\exp \left(\sum_{i<j} w_{i j} s_{i} s_{j}\right)}{\sum_{S^{\prime}} \exp \left(\sum_{i<j} w_{i j} s_{i}^{\prime} s_{j}^{\prime}\right)} P(S)=Sexp(i<jwijsisj)exp(i<jwijsisj)
    • P ( V ) = ∑ H exp ⁡ ( ∑ i < j w i j s i s j ) ∑ S ′ exp ⁡ ( ∑ i < j w i j s i ′ s j ′ ) P(V)=\sum_{H} \frac{\exp \left(\sum_{i<j} w_{i j} s_{i} s_{j}\right)}{\sum_{S^{\prime}} \exp \left(\sum_{i<j} w_{i j} s_{i}^{\prime} s_{j}^{\prime}\right)} P(V)=HSexp(i<jwijsisj)exp(i<jwijsisj)
  • Maximum Likelihood Training

    log ⁡ ( P ( V ) ) = log ⁡ ( ∑ H exp ⁡ ( ∑ i < j w i j s i s j ) ) − log ⁡ ( ∑ S ′ exp ⁡ ( ∑ i < j w i j s i ′ s j ′ ) ) \log (P(V))=\log \left(\sum_{H} \exp \left(\sum_{i<j} w_{i j} s_{i} s_{j}\right)\right)-\log \left(\sum_{S_{\prime}} \exp \left(\sum_{i<j} w_{i j} s_{i}^{\prime} s_{j}^{\prime}\right)\right) log(P(V))=log(Hexp(i<jwijsisj))log(Sexp(i<jwijsisj))

    L = 1 N ∑ V ∈ V log ⁡ ( P ( V ) ) \mathcal{L}=\frac{1}{N} \sum_{V \in \mathbf{V}} \log (P(V)) L=N1VVlog(P(V))
    d L d w i j = 1 N ∑ V ∈ V ∑ H P ( S ∣ V ) s i s j − ∑ S ! P ( S ′ ) s i ′ s j ′ \frac{d \mathcal{L}}{d w_{i j}}=\frac{1}{N} \sum_{V \in \mathbf{V}} \sum_{H} P(S \mid V) s_{i} s_{j}-\sum_{S !} P\left(S^{\prime}\right) s_{i}^{\prime} s_{j}^{\prime} dwijdL=N1VVHP(SV)sisjS!P(S)sisj

  • ∑ H P ( S ∣ V ) s i s j ≈ 1 K ∑ H ∈ H s i m u l s i S j \sum_{H} P(S \mid V) s_{i} s_{j} \approx \frac{1}{K} \sum_{H \in \mathbf{H}_{s i m u l}} s_{i} S_{j} HP(SV)sisjK1HHsimulsiSj

  • Computed as the average sampled hidden state with the visible bits fixed

  • ∑ S ′ P ( S ′ ) s i ′ s j ′ ≈ 1 M ∑ S i ∈ S s i m u l s i ′ S j ′ \sum_{S^{\prime}} P\left(S^{\prime}\right) s_{i}^{\prime} s_{j}^{\prime} \approx \frac{1}{M} \sum_{S_{i} \in \mathbf{S}_{s i m u l}} s_{i}^{\prime} S_{j}^{\prime} SP(S)sisjM1SiSsimulsiSj

    • Computed as the average of sampled states when the network is running “freely

Training

Step1

  • For each training pattern V i V_i Vi
    • Fix the visible units to V i V_i Vi
    • Let the hidden neurons evolve from a random initial point to generate H i H_i Hi
    • Generate S i = [ V i , H i ] S_i = [V_i,H_i] Si=[Vi,Hi]
  • Repeat K times to generate synthetic training

S = { S 1 , 1 , S 1 , 2 , … , S 1 K , S 2 , 1 , … , S N , K } \mathbf{S}=\{S_{1,1}, S_{1,2}, \ldots, S_{1 K}, S_{2,1}, \ldots, S_{N, K}\} S={S1,1,S1,2,,S1K,S2,1,,SN,K}

Step2

  • Now unclamp the visible units and let the entire network evolve several times to generate

S s i m u l = S _ s i m u l , 1 , S _ s i m u l , 2 , … , S _ s i m u l , M \mathbf{S}_{simul}=S\_{simul, 1}, S\_{simul, 2}, \ldots, S\_{simul, M} Ssimul=S_simul,1,S_simul,2,,S_simul,M

Gradients
d ⟨ log ⁡ ( P ( S ) ) ⟩ d w i j = 1 N K ∑ S s i s j − 1 M ∑ S i ∈ S simul  s i ′ s j ′ \frac{d\langle\log (P(\mathbf{S}))\rangle}{d w_{i j}}=\frac{1}{N K} \sum_{\boldsymbol{S}} s_{i} s_{j}-\frac{1}{M} \sum_{S_{i} \in \mathbf{S}_{\text {simul }}} s_{i}^{\prime} s_{j}^{\prime} dwijdlog(P(S))=NK1SsisjM1SiSsimul sisj

w i j = w i j − η d ⟨ log ⁡ ( P ( S ) ) ⟩ d w i j w_{i j}=w_{i j}-\eta \frac{d\langle\log (P(\mathbf{S}))\rangle}{d w_{i j}} wij=wijηdwijdlog(P(S))

  • Gradients are computed as before, except that the first term is now computed over the expanded training data

Issues

  • Training takes for ever
  • Doesn’t really work for large problems
    • A small number of training instances over a small number of bits

Restricted Boltzmann Machines

在这里插入图片描述

  • Partition visible and hidden units
    • Visible units ONLY talk to hidden units
    • Hidden units ONLY talk to visible units

Training

Step1

  • For each sample
    • Anchor visible units
    • Sample from hidden units
    • No looping!!

Step2

  • Now unclamp the visible units and let the entire network evolve several times to generate

S s i m u l = S _ s i m u l , 1 , S _ s i m u l , 2 , … , S _ s i m u l , M \mathbf{S}_{simul}=S\_{simul, 1}, S\_{simul, 2}, \ldots, S\_{simul, M} Ssimul=S_simul,1,S_simul,2,,S_simul,M

在这里插入图片描述

  • For each sample
    • Initialize V 0 V_0 V0 (visible) to training instance value
    • Iteratively generate hidden and visible units
  • Gradient

在这里插入图片描述

∂ log ⁡ p ( v ) ∂ w i j = < v i h j > 0 − < v i h j > ∞ \frac{\partial \log p(v)}{\partial w_{i j}}=<v_{i} h_{j}>^{0}-<v_{i} h_{j}>^{\infty} wijlogp(v)=<vihj>0<vihj>

A Shortcut: Contrastive Divergence

  • Recall: Raise the neighborhood of each target memory
  • Sufficient to run one iteration to give a good estimate of the gradient

∂ log ⁡ p ( v ) ∂ w i j = < v i h j > 0 − < v i h j > 1 \frac{\partial \log p(v)}{\partial w_{i j}}=< v_{i} h_{j}>^{0}-<v_{i} h_{j}>^{1} wijlogp(v)=<vihj>0<vihj>1

;