Bootstrap

GLM-4 (4) - SelfAttention

系列文章目录

GLM-4 (1) - 推理+概览
GLM-4 (2) - RoPE
GLM-4 (3) - GLMBlock
GLM-4 (4) - SelfAttention



前言

AttentionTransformer架构核心。刚开始使用的一般是multi-head attention,本质上是希望在维度上进行切分,效果类似于CNN中多个通道。如果头的个数是n_head,那么query, key, value都被切分成n_head份,分别做self attention操作,最后将结果拼接。
后面又开发出了multi-query/grouped-query attention,也就是说query还是和之前一样,但是key & value会在多个头之间共享。实验结果表明,multi-query attention大大提升了解码速度;同时考虑到kv_cache缓存,multi-query / grouped-query attention大大减小了存储每个头的键和值所需的内存开销。
MQA(multi-query attention)论文:https://arxiv.org/pdf/1911.02150
GQA(grouped-query attention)论文:https://arxiv.org/pdf/2305.13245


一、概述

在这里插入图片描述
根据上图,我们很容易理解3种注意力的区别。chatGLM2中的Multi Query Attention这篇博客中介绍了multi-head attentionmulti-query attention的区别,其实就是简单的将keyvalue由原来的n_head份变成1份,节省了参数量,并且提升了速度。博客也给出demo代码,测试了两者的速度差异。这边为了本篇记录的完整性,摘录一下代码。

import os

os.environ['CUDA_VISIBLE_DEVICES'] = "1"
import math
import torch.nn as nn
import torch
from tqdm import tqdm
import time


class MiltiHeadSelfAttention(nn.Module):
    def __init__(self, num_attention_heads, hidden_size):
        super().__init__()
        self.num_attention_heads = num_attention_heads
        self.attention_head_size = int(hidden_size / num_attention_heads)
        self.all_head_size = self.num_attention_heads * self.attention_head_size

        self.query = nn.Linear(hidden_size, self.all_head_size)
        self.key = nn.Linear(hidden_size, self.all_head_size)
        self.value = nn.Linear(hidden_size, self.all_head_size)

        self.dropout = nn.Dropout(0.1)

    def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor:
        new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
        x = x.view(new_x_shape)
        return x.permute(0, 2, 1, 3)

    def forward(self, hidden_states):
        mixed_query_layer = self.query(hidden_states)
        key_layer = self.transpose_for_scores(self.key(hidden_states))
        value_layer = self.transpose_for_scores(self.value(hidden_states))
        query_layer = self.transpose_for_scores(mixed_query_layer)

        attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
        attention_scores = attention_scores / math.sqrt(self.attention_head_size)
        attention_probs = nn.functional.softmax(attention_scores, dim=-1)
        attention_probs = self.dropout(attention_probs)
        context_layer = torch.matmul(attention_probs, value_layer)
        context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
        new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
        context_layer = context_layer.view(new_context_layer_shape)
        return context_layer


class MultiQuerySelfAttention(nn.Module):
    def __init__(self, num_attention_heads, hidden_size):
        super().__init__()
        self.num_attention_heads = num_attention_heads
        self.attention_head_size = int(hidden_size / num_attention_heads)
        self.all_head_size = self.num_attention_heads * self.attention_head_size

        self.query = nn.Linear(hidden_size, self.all_head_size)
        self.key = nn.Linear(hidden_size, self.attention_head_size)
        self.value = nn.Linear(hidden_size, self.attention_head_size)

        self.dropout = nn.Dropout(0.1)

    def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor:
        new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
        x = x.view(new_x_shape)
        return x.permute(0, 2, 1, 3)

    def forward(self, hidden_states):
        # hidden_states (B, L, D)
        mixed_query_layer = self.query(hidden_states)
        # query_layer  (B, h, L, d)
        query_layer = self.transpose_for_scores(mixed_query_layer)

        # 每个key、value head参数都是一样的,只计算一次
        key = self.key(hidden_states)
        # key_layer  (B, 1, L, d)
        key_layer = key.unsqueeze(1)
        value = self.value(hidden_states)
        # value_layer  (B, 1, L, d)
        value_layer = value.unsqueeze(1)

        # key_layer  (B, 1, d, L)
        key_layer = key_layer.transpose(-1, -2)
        # 广播算法 (B, h, L, d) * (B, 1, d, L) => (B, h, L, d) * (B, h, d, L) = (B, h, L, L)
        attention_scores = torch.matmul(query_layer, key_layer)
        attention_scores = attention_scores / math.sqrt(self.attention_head_size)
        attention_probs = nn.functional.softmax(attention_scores, dim=-1)
        attention_probs = self.dropout(attention_probs)
        # 广播算法 (B, h, L, L) * (B, 1, L, d) =>(B, h, L, L) * (B, h, L, d)= (B, h, L, d)
        context_layer = torch.matmul(attention_probs, value_layer)
        # (B, h, L, d) => (B, L, h, d)
        context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
        # (B,L, h*d) => (B,L,D)
        new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
        # (B,L, h*d) => (B,L,D)
        context_layer = context_layer.view(new_context_layer_shape)
        return context_layer


if __name__ == '__main__':
    seed = 100
    num_attention_heads, hidden_size = 32, 4096
    torch.manual_seed(seed)
    torch.cuda.manual_seed(seed)
    device = "cuda:0"

    embeddings = torch.randn(5, 128, hidden_size).to(device)

    multiquery = MultiQuerySelfAttention(num_attention_heads, hidden_size).to(device)
    print(multiquery)
    total = 0
    for name, param in multiquery.named_parameters():
        if len(param.size()) == 2:
            total += param.shape[0] * param.shape[1]
        else:
            total += param.shape[0]
    print(f"multiquery parameters {total}")
    count = 100
    start = time.time()
    for _ in tqdm(range(count), ncols=50):
        input = embeddings.clone()
        for _ in range(100):
            for i in range(24):
                ouput = multiquery(input)
            input = torch.cat([input, ouput[:, -1:, :]], dim=1)
    end = time.time()
    print(f"multiquery time total cost {round(end - start, 8)} mean cost {round((end - start) / count, 8)}")

    multihead = MiltiHeadSelfAttention(num_attention_heads, hidden_size).to(device)
    print(multihead)
    total = 0
    for name, param in multihead.named_parameters():
        if len(param.size()) == 2:
            total += param.shape[0] * param.shape[1]
        else:
            total += param.shape[0]
    print(f"multihead parameters {total}")
    count = 100
    start = time.time()
    for _ in tqdm(range(count), ncols=50):
        input = embeddings.clone()
        for _ in range(100):
            for i in range(24):
                ouput = multihead(input)
            input = torch.cat([input, ouput[:, -1:, :]], dim=1)
    end = time.time()
    print(f"multihead time total cost {round(end - start, 8)} mean cost {round((end - start) / count, 8)}")

不太富裕,单卡3090测试结果表明multi-query attention提速超过两倍。
在这里插入图片描述

二、multi-head attention

nanoGPT项目是一个很好的学习大模型的项目,multi-head attention实现的也很优雅,特地提一嘴,代码实现如下:

import math
from typing import Optional

import torch
import torch.nn as nn
from torch import Tensor

import torch.nn.functional as F

from model import GPTConfig
from transformers import GPT2Model


class CausalSelfAttention(nn.Module):
    """
    自注意力
    """

    def __init__(self, config: GPTConfig):
        super().__init__()
        assert config.n_embd % config.n_head == 0

        self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd, bias=config.bias)
        # 线性投影层
        self.c_proj = nn.Linear(config.n_embd, config.n_embd, bias=config.bias)
        # 正则化dropout
        self.attn_dropout = nn.Dropout(config.dropout)
        self.resid_dropout = nn.Dropout(config.dropout)

        self.n_head = config.n_head
        self.n_embd = config.n_embd
        self.dropout = config.dropout

        # 是否可以使用pytorch内置scaled点积注意力
        self.flash = hasattr(torch.nn.functional, 'scaled_dot_product_attention') and self.dropout == 0.0
        if not self.flash:
            print("WARNING: using slow attention. Flash Attention atm needs PyTorch nightly and dropout=0.0")
            # causal mask to ensure that attention is only applied to the left in the input sequence
            self.register_buffer("bias", torch.tril(torch.ones(config.block_size, config.block_size))
                                 .view(1, 1, config.block_size, config.block_size))

    def forward(self, x: Tensor, valid_length: Optional[Tensor]) -> Tensor:   # : torch.Tensor
        """
        前向传播
        """
        B, T, C = x.size()  # batch size, sequence length, embedding dimensionality (n_embd)

        # 计算query, key, value, shape都是(batch_size, n_head, sequence_length, n_embd / n_head)
        q, k, v = self.c_attn(x).split(split_size=self.n_embd, dim=2)
        k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
        q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
        v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)

        # 点积注意力计算
        if self.flash:
            y = nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=None, dropout_p=self.dropout,
                                                           is_causal=True)
        else:
            att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))  # (B, nh, T, T)

            # 直接不使用valid_length
            att = att.masked_fill(self.bias[:, :, :T, :T] == 0, float("-inf"))
            att = F.softmax(att, dim=-1)

            att = self.attn_dropout(att)
            y = att @ v  # (batch_size, n_head, sequence_length, n_embd / n_head)
        y = y.transpose(1, 2).contiguous().view(B, T, C)     # (B, T, C)

        # 输出投影
        y = self.resid_dropout(self.c_proj(y))   # (B, T, C)
        return y

这边一直都是多维矩阵的乘法,最后y = y.transpose(1, 2).contiguous().view(B, T, C)实现了如下维度转换,也就是多头结果的拼接:(B, n_head, T, C // n_head) -> (B, T, n_head, C // n_head) -> (B, T, C)

三、multi-query / grouped-query attention

GLM-4中,同时用多种方式进行了实现,并且包含了multi-head attentionmulti-query attention,但是这边主要探究后者。注:我输入了it is me,此时seq_len=8

  • attention_scores为什么要做缩放的出处是?
CORE_ATTENTION_CLASSES = {
    "eager": CoreAttention,
    "sdpa": SdpaAttention,      # 点积注意力
    "flash_attention_2": FlashAttention2
}


class SelfAttention(torch.nn.Module):
    """Parallel self-attention layer abstract class.

    Self-attention layer takes input with size [s, b, h]
    and returns output of the same size.
    """

    def __init__(self, config: ChatGLMConfig, layer_number, device=None):
        super(SelfAttention, self).__init__()
        # GLMBlock层数,后面用于attention_scores缩放
        self.layer_number = max(1, layer_number)
        # 投影(输出)层大小,理论上和hidden_size一致
        self.projection_size = config.kv_channels * config.num_attention_heads  # 4096

        # Per attention head and per partition values.
        self.hidden_size_per_attention_head = self.projection_size // config.num_attention_heads   # 128
        self.num_attention_heads_per_partition = config.num_attention_heads    # 32

        self.multi_query_attention = config.multi_query_attention  # True,使用multi_query_attention

        # multi-head时的大小
        self.qkv_hidden_size = 3 * self.projection_size
        # multi-query时的大小
        if self.multi_query_attention:
            self.num_multi_query_groups_per_partition = config.multi_query_group_num
            self.qkv_hidden_size = (
                    self.projection_size + 2 * self.hidden_size_per_attention_head * config.multi_query_group_num
            )
        self.query_key_value = nn.Linear(config.hidden_size, self.qkv_hidden_size,
                                         bias=config.add_bias_linear or config.add_qkv_bias,
                                         device=device, **_config_to_kwargs(config)
                                         )

        # 选择注意力实现方式
        self.core_attention = CORE_ATTENTION_CLASSES[config._attn_implementation](config, self.layer_number)

        # 线性输出层
        self.dense = nn.Linear(self.projection_size, config.hidden_size, bias=config.add_bias_linear,
                               device=device, **_config_to_kwargs(config)
                               )

    def _allocate_memory(self, inference_max_sequence_len, batch_size, device=None, dtype=None):
        if self.multi_query_attention:
            num_attention_heads = self.num_multi_query_groups_per_partition
        else:
            num_attention_heads = self.num_attention_heads_per_partition
        return torch.empty(
            inference_max_sequence_len,
            batch_size,
            num_attention_heads,
            self.hidden_size_per_attention_head,
            dtype=dtype,
            device=device,
        )

    def forward(
            self, hidden_states, attention_mask, rotary_pos_emb, kv_cache=None, use_cache=True
    ):
        # hidden_states: [b, sq, h]

        # =================================================
        # Pre-allocate memory for key-values for inference.
        # =================================================
        # =====================
        # Query, Key, and Value
        # =====================

        # Attention heads [b, sq, h] --> [b, sq, (np * 3 * hn)]    
        # 上述注释是针对multi-head的,multi-query的key和value维度与query不同,
        # 比如为[1, 8, 4096] --> [1, 8, 4608], 4608 = 4096 (q) + 2 * (2 * 128) (kv)
        mixed_x_layer = self.query_key_value(hidden_states)

        # split获取qkv
        if self.multi_query_attention:
            (query_layer, key_layer, value_layer) = mixed_x_layer.split(
                [
                    self.num_attention_heads_per_partition * self.hidden_size_per_attention_head,        # q: 32 * 128
                    self.num_multi_query_groups_per_partition * self.hidden_size_per_attention_head,     # k: 2 * 128
                    self.num_multi_query_groups_per_partition * self.hidden_size_per_attention_head,     # v: 2 * 128
                ],
                dim=-1,
            )
            query_layer = query_layer.view(
                query_layer.size()[:-1] + (self.num_attention_heads_per_partition, self.hidden_size_per_attention_head)
            )            # [batch_size, seq_len, num_head, hidden_size_per] -> [1, 8, 32, 128]
            key_layer = key_layer.view(
                key_layer.size()[:-1] + (self.num_multi_query_groups_per_partition, self.hidden_size_per_attention_head)
            )            # [1, 8, 2, 128]
            value_layer = value_layer.view(
                value_layer.size()[:-1]
                + (self.num_multi_query_groups_per_partition, self.hidden_size_per_attention_head)
            )            # [1, 8, 2, 128]
        else:
            new_tensor_shape = mixed_x_layer.size()[:-1] + \
                               (self.num_attention_heads_per_partition,
                                3 * self.hidden_size_per_attention_head)
            mixed_x_layer = mixed_x_layer.view(*new_tensor_shape)

            # [b, sq, np, 3 * hn] --> 3 [b, sq, np, hn]
            (query_layer, key_layer, value_layer) = split_tensor_along_last_dim(mixed_x_layer, 3)

        # [b, sq, np, hn] -> [b, np, sq, hn]            # 将head/query_group放到dim=1的位置
        query_layer, key_layer, value_layer = [k.transpose(1, 2) for k in [query_layer, key_layer, value_layer]]

        # apply relative positional encoding (rotary embedding)
        if rotary_pos_emb is not None:
            # (1, 32, 8, 128)                 (1, 32, 8, 128), (1, 8, 32, 2)
            query_layer = apply_rotary_pos_emb(query_layer, rotary_pos_emb)  
            # (1, 2, 8, 128)                  (1, 2, 8, 128), (1, 8, 32, 2)
            key_layer = apply_rotary_pos_emb(key_layer, rotary_pos_emb)      

        # adjust key and value for inference
        if kv_cache is not None:     # 第一轮过后,kv_cache: tuple(2 * torch.Size(1, 2, 8, 128))
            cache_k, cache_v = kv_cache
            key_layer = torch.cat((cache_k, key_layer), dim=2)   # (1, 2, 8+1, 128)
            value_layer = torch.cat((cache_v, value_layer), dim=2)
        if use_cache:
            if kv_cache is None:     # 第一轮的时候kv_cache=None
                # key_layer.unsqueeze(0).unsqueeze(0): [1, 1, batch_size, np, seq_len, hn]
                # kv_cache: [1, 2 (k & v), batch_size, np, seq_len, hn] 即 (1, 2, 1, 2, 8, 128)
                kv_cache = torch.cat((key_layer.unsqueeze(0).unsqueeze(0), value_layer.unsqueeze(0).unsqueeze(0)),
                                     dim=1)   
            else:
                kv_cache = (key_layer, value_layer)
        else:
            kv_cache = None

        if self.multi_query_attention:
            key_layer = key_layer.unsqueeze(2)  # (1, 2, 8, 128) -> (1, 2, 1, 8, 128)
            key_layer = key_layer.expand(
                -1, -1, self.num_attention_heads_per_partition // self.num_multi_query_groups_per_partition, -1, -1
            )                                   # (1, 2, 32 // 2, 8, 128)
            key_layer = key_layer.contiguous().view(
                key_layer.size()[:1] + (self.num_attention_heads_per_partition,) + key_layer.size()[3:]
            )                                   # (1, 32, 8, 128)
            value_layer = value_layer.unsqueeze(2)
            value_layer = value_layer.expand(
                -1, -1, self.num_attention_heads_per_partition // self.num_multi_query_groups_per_partition, -1, -1
            )
            value_layer = value_layer.contiguous().view(
                value_layer.size()[:1] + (self.num_attention_heads_per_partition,) + value_layer.size()[3:]
            )

        # ==================================
        # core attention computation
        # ==================================
        # query_layer, key_layer, value_layer shape相同,都是(1, 32, 8, 128)
        context_layer = self.core_attention(query_layer, key_layer, value_layer, attention_mask)  # (1, 8, 4096)

        
        # 线性输层:[b, sq, h],即(1, 8, 4096)
        output = self.dense(context_layer)   
        # [batch_size, seq_len, hidden_dim], [1, 2 (k & v), batch_size, num_group, seq_len, hn(每个头对应的维度)]
        return output, kv_cache     # (1, 8, 4096), (1, 2, 1, 2, 8, 128)

1.SdpaAttention

上面说到了,代码中包含了attention的多种实现方式,具体而言如下:

CORE_ATTENTION_CLASSES = {
    "eager": CoreAttention,    # 原始实现
    "sdpa": SdpaAttention,     # 点积attention,对应实现方式是torch.nn.functional.scaled_dot_product_attention
    "flash_attention_2": FlashAttention2   # 使用flash_attention_2
}

由于SdpaAttention是代码中默认的实现方式(配置文件中有写),所以这边先说一下它。此时在trans_cli_demo.py中不需要做任何多余的动作,一切交给配置文件:

# trans_cli_demo.py
tokenizer = AutoTokenizer.from_pretrained(
    MODEL_PATH,
    trust_remote_code=True,
    encode_special_tokens=True
)

model = AutoModel.from_pretrained(
    MODEL_PATH,
    trust_remote_code=True,
    # attn_implementation="flash_attention_2", # Use Flash Attention
    # torch_dtype=torch.bfloat16, #using flash-attn must use bfloat16 or float16
    device_map="auto").eval()

代码中SdpaAttention集成自CoreAttention,但实际它两的区别仅在于:SdpaAttention使用的是torch的模块直接求解注意力,而CoreAttention则是手搓了attention的forward部分。代码部分我已经给出了详细注释。总的来说:

  1. 遵从attention计算公式:
    在这里插入图片描述
    只是需要合理的变换tensor的shape,并使用矩阵相乘来完成该计算;
  2. 注意这边是单向注意力。
# SdpaAttention
class SdpaAttention(CoreAttention):
    def forward(self, query_layer, key_layer, value_layer, attention_mask):   # query(/key/value)_layer: (batch_size, num_head, seq_len, dim_per_head), 需要注意的是,此前key/value_layer: (batch_size, num_query_group, seq_len, dim_per_head)
        if attention_mask is None and query_layer.shape[2] == key_layer.shape[2]:   # shape: (1, 32, 8, 128)
            context_layer = torch.nn.functional.scaled_dot_product_attention(query_layer, key_layer, value_layer,
                                                                             is_causal=True,
                                                                             dropout_p=self.config.attention_dropout if self.training else 0.0)
        else:
            if attention_mask is not None:
                attention_mask = ~attention_mask
            context_layer = torch.nn.functional.scaled_dot_product_attention(query_layer, key_layer, value_layer,
                                                                             attention_mask,
                                                                             dropout_p=self.config.attention_dropout if self.training else 0.0)
        context_layer = context_layer.transpose(1, 2).contiguous()                  # shape: (1, 8, 32, 128)
        new_context_layer_shape = context_layer.size()[:-2] + (self.hidden_size_per_partition,)
        context_layer = context_layer.reshape(*new_context_layer_shape)             # (1, 8, 4096)
        return context_layer

# CoreAttention
class CoreAttention(torch.nn.Module):
    def __init__(self, config: ChatGLMConfig, layer_number):
        super(CoreAttention, self).__init__()
        self.config = config
        self.apply_query_key_layer_scaling = config.apply_query_key_layer_scaling     # True
        self.attention_softmax_in_fp32 = config.attention_softmax_in_fp32             # True
        if self.apply_query_key_layer_scaling:
            self.attention_softmax_in_fp32 = True
        self.layer_number = max(1, layer_number)     # GLMBlock或者是attention的层数(1~40)
        self.is_causal = True

        projection_size = config.kv_channels * config.num_attention_heads   # 投影层尺寸:4096 = 128 * 32

        # Per attention head and per partition values.
        self.hidden_size_per_partition = projection_size    # 4096
        self.hidden_size_per_attention_head = projection_size // config.num_attention_heads   # 根据头的个数均分:128 = 4096 // 32
        self.num_attention_heads_per_partition = config.num_attention_heads  # 32

        coeff = None
        self.norm_factor = math.sqrt(self.hidden_size_per_attention_head)    # 注意力公式种的根号d
        if self.apply_query_key_layer_scaling:    # 不同的层,会有不同的缩放系数(很熟悉,但是需要找找出处)
            coeff = self.layer_number
            self.norm_factor *= coeff     # TODO: WHY
        self.coeff = coeff

        self.attention_dropout = torch.nn.Dropout(config.attention_dropout)

    def forward(self, query_layer, key_layer, value_layer, attention_mask):
        # [b, np, sq, sk] 即(batch_size, num_head, seq_len, seq) (1, 32, 8, 8)。这边query_layer和key_layer形状是相同的
        output_size = (query_layer.size(0), query_layer.size(1), query_layer.size(2), key_layer.size(2))

        # [b, np, sq, hn] -> [b * np, sq, hn]    (1, 32, 8, 128) -> (32, 8, 128)
        query_layer = query_layer.view(output_size[0] * output_size[1], output_size[2], -1)
        # [b, np, sk, hn] -> [b * np, sk, hn]    (1, 32, 8, 128) -> (32, 8, 128)
        key_layer = key_layer.view(output_size[0] * output_size[1], output_size[3], -1)

        # preallocting input tensor: [b * np, sq, sk]   query_layer和key_layer矩阵相乘 -> (1*32, 8, 8)
        matmul_input_buffer = torch.empty(
            output_size[0] * output_size[1], output_size[2], output_size[3], dtype=query_layer.dtype,
            device=query_layer.device
        )

        # Raw attention scores. [b * np, sq, sk]
        matmul_result = torch.baddbmm(
            matmul_input_buffer,       # 这个量不需要管,因为与之相乘的beta=0.0
            query_layer,  # [b * np, sq, hn]
            key_layer.transpose(1, 2),  # [b * np, hn, sk]
            beta=0.0,
            alpha=(1.0 / self.norm_factor),   # 这边矩阵batch相乘有个缩放系数
        )

        # change view to [b, np, sq, sk]
        attention_scores = matmul_result.view(*output_size)

        # ===========================
        # Attention probs and dropout
        # ===========================

        # attention scores and attention mask [b, np, sq, sk]
        if self.attention_softmax_in_fp32:
            attention_scores = attention_scores.float()    # (1, 32, 8, 8)
        if self.coeff is not None:
            attention_scores = attention_scores * self.coeff
        if attention_mask is None and attention_scores.shape[2] == attention_scores.shape[3]:
            attention_mask = torch.ones(output_size[0], 1, output_size[2], output_size[3],
                                        device=attention_scores.device, dtype=torch.bool)     # (batch_size, 1, seq_len, seq_len)
            attention_mask.tril_()               # 下三角都为True,其余是False
            attention_mask = ~attention_mask     # 取反,下三角都是False
        if attention_mask is not None:
            attention_scores = attention_scores.masked_fill(attention_mask, float("-inf"))    # 下三角保持,其余部分注意力分数都为-inf。也就是单向的 
        attention_probs = F.softmax(attention_scores, dim=-1)   # (1, 32, 8, 8)
        attention_probs = attention_probs.type_as(value_layer)

        # This is actually dropping out entire tokens to attend to, which might
        # seem a bit unusual, but is taken from the original Transformer paper.
        attention_probs = self.attention_dropout(attention_probs)

        # query layer shape: [b * np, sq, hn]
        # value layer shape: [b, np, sk, hn]
        # attention shape: [b, np, sq, sk]
        # context layer shape: [b, np, sq, hn]
        output_size = (value_layer.size(0), value_layer.size(1), query_layer.size(1), value_layer.size(3))  # (batch_size, num_head, seq_len, dim_per_head) (1, 32, 8, 128)
        # change view [b * np, sk, hn]
        value_layer = value_layer.view(output_size[0] * output_size[1], value_layer.size(2), -1)    # (1 * 32, 8, 128)
        # change view [b * np, sq, sk]
        attention_probs = attention_probs.view(output_size[0] * output_size[1], output_size[2], -1)   # (1 * 32, 8, 8)
        # matmul: [b * np, sq, hn]
        context_layer = torch.bmm(attention_probs, value_layer)   # (1 * 32, 8, 128)
        # change view [b, np, sq, hn]
        context_layer = context_layer.view(*output_size)   # (1, 32, 8, 128)
        # [b, np, sq, hn] --> [b, sq, np, hn]
        context_layer = context_layer.transpose(1, 2).contiguous()   # 序列维度前置,(1, 8, 32, 128)
        # [b, sq, np, hn] --> [b, sq, hp]
        new_context_layer_shape = context_layer.size()[:-2] + (self.hidden_size_per_partition,)  # 多头合并,(1, 8, 4096)
        context_layer = context_layer.reshape(*new_context_layer_shape)

        return context_layer

2.CoreAttention

这边说一下CoreAttention。如果要使用它,除了在原始配置文件中修改成"attn_implementation": "eager",同时在创建模型时做如下修改(此博客中也提到了):

tokenizer = AutoTokenizer.from_pretrained(
    MODEL_PATH,
    trust_remote_code=True,
    encode_special_tokens=True
)

model = AutoModel.from_pretrained(
    MODEL_PATH,
    trust_remote_code=True,
    attn_implementation="eager",
    # attn_implementation="flash_attention_2", # Use Flash Attention
    # torch_dtype=torch.bfloat16, #using flash-attn must use bfloat16 or float16
    device_map="auto").eval()

model.config._attn_implementation_internal = "eager"   # 这边一定要注明,否则还是sdpa

具体的代码和注释已经在上面展示过了,它是自己实现forward,学习它更有助于我们理解attention机制。

3.FlashAttention2

暂时忽略


总结

  1. multi-query / grouped-query attention是比multi-head attention参数两更少的注意力,解码速度大大增加;
  2. 由于kv_cache缓存,multi-query / grouped-query attention大大减小了存储每个头的键和值所需的内存开销。
;