Bootstrap

【头歌】MapReduce基础实战 答案

本专栏已收集大数据所有答案

第1关:成绩统计


编程要求

使用MapReduce计算班级每个学生的最好成绩,输入文件路径为/user/test/input,请将计算后的结果输出到/user/test/output/目录下。

答案

需要先在命令行启动HDFS

#命令行
start-dfs.sh


再在代码文件中写入以下代码

#代码文件
import java.io.IOException;
import java.util.StringTokenizer;
 
import java.io.IOException;
import java.util.StringTokenizer;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.*;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;
 
public class WordCount {
    /********** Begin **********/
    //Mapper函数
    public static class TokenizerMapper extends Mapper<LongWritable, Text, Text, IntWritable> {
        private final static IntWritable one = new IntWritable(1);
        private Text word = new Text();
        private int maxValue = 0;
        public void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
            StringTokenizer itr = new StringTokenizer(value.toString(),"\n");
            while (itr.hasMoreTokens()) {
                String[] str = itr.nextToken().split(" ");
                String name = str[0];
                one.set(Integer.parseInt(str[1]));
                word.set(name);
                context.write(word,one);
            }
            //context.write(word,one);
        }
    }
    public static class IntSumReducer extends Reducer<Text, IntWritable, Text, IntWritable> {
        private IntWritable result = new IntWritable();
        public void reduce(Text key, Iterable<IntWritable> values, Context context)
                throws IOException, InterruptedException {
            int maxAge = 0;
            int age = 0;
            for (IntWritable intWritable : values) {
                maxAge = Math.max(maxAge, intWritable.get());
            }
            result.set(maxAge);
            context.write(key, result);
        }
    }
    public static void main(String[] args) throws Exception {
        Configuration conf = new Configuration();
        Job job = new Job(conf, "word count");
        job.setJarByClass(WordCount.class);
        job.setMapperClass(TokenizerMapper.class);
        job.setCombinerClass(IntSumReducer.class);
        job.setReducerClass(IntSumReducer.class);
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(IntWritable.class);
        String inputfile = "/user/test/input";
        String outputFile = "/user/test/output/";
        FileInputFormat.addInputPath(job, new Path(inputfile));
        FileOutputFormat.setOutputPath(job, new Path(outputFile));
        job.waitForCompletion(true);
    /********** End **********/
    }
}

第2关:文件内容合并去重

 答案代码:

需要先在命令行启动HDFS

#命令行
start-dfs.sh


再在代码文件中写入以下代码:

#代码文件
import java.io.IOException;
 
import java.util.*;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.*;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;
 
public class Merge {
 
    /**
     * @param args
     * 对A,B两个文件进行合并,并剔除其中重复的内容,得到一个新的输出文件C
     */
    //在这重载map函数,直接将输入中的value复制到输出数据的key上 注意在map方法中要抛出异常:throws IOException,InterruptedException
    public static class Map  extends Mapper<Object, Text, Text, Text>{
    
    /********** Begin **********/
 
        public void map(Object key, Text value, Context content) 
            throws IOException, InterruptedException {  
            Text text1 = new Text();
            Text text2 = new Text();
            StringTokenizer itr = new StringTokenizer(value.toString());
            while (itr.hasMoreTokens()) {
                text1.set(itr.nextToken());
                text2.set(itr.nextToken());
                content.write(text1, text2);
            }
        }  
    /********** End **********/
    } 
        
    //在这重载reduce函数,直接将输入中的key复制到输出数据的key上  注意在reduce方法上要抛出异常:throws IOException,InterruptedException
    public static class  Reduce extends Reducer<Text, Text, Text, Text> {
    /********** Begin **********/
        
        public void reduce(Text key, Iterable<Text> values, Context context) 
            throws IOException, InterruptedException {
            Set<String> set = new TreeSet<String>();
            for(Text tex : values){
                set.add(tex.toString());
            }
            for(String tex : set){
                context.write(key, new Text(tex));
            }
        }  
    
    /********** End **********/
 
    }
    
    public static void main(String[] args) throws Exception{
 
        // TODO Auto-generated method stub
        Configuration conf = new Configuration();
        conf.set("fs.default.name","hdfs://localhost:9000");
        
        Job job = Job.getInstance(conf,"Merge and duplicate removal");
        job.setJarByClass(Merge.class);
        job.setMapperClass(Map.class);
        job.setCombinerClass(Reduce.class);
        job.setReducerClass(Reduce.class);
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(Text.class);
        String inputPath = "/user/tmp/input/";  //在这里设置输入路径
        String outputPath = "/user/tmp/output/";  //在这里设置输出路径
 
        FileInputFormat.addInputPath(job, new Path(inputPath));
        FileOutputFormat.setOutputPath(job, new Path(outputPath));
        System.exit(job.waitForCompletion(true) ? 0 : 1);
    }
 
}


 

第3关:信息挖掘 - 挖掘父子关系


编程要求

你编写的程序要能挖掘父子辈关系,给出祖孙辈关系的表格。规则如下:

孙子在前,祖父在后;
输入文件路径:/user/reduce/input;
输出文件路径:/user/reduce/output。
  代码:

需要先在命令行启动HDFS

#命令行
start-dfs.sh


再在代码文件中写入以下代码:

#代码文件
import java.io.IOException;
import java.util.*;
 
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;
 
public class simple_data_mining {
    public static int time = 0;
 
    /**
     * @param args
     * 输入一个child-parent的表格
     * 输出一个体现grandchild-grandparent关系的表格
     */
    //Map将输入文件按照空格分割成child和parent,然后正序输出一次作为右表,反序输出一次作为左表,需要注意的是在输出的value中必须加上左右表区别标志
    public static class Map extends Mapper<Object, Text, Text, Text>{
        public void map(Object key, Text value, Context context) throws IOException,InterruptedException{
            /********** Begin **********/
        String line = value.toString();
             String[] childAndParent = line.split(" ");
             List<String> list = new ArrayList<>(2);
              for (String childOrParent : childAndParent) {
                 if (!"".equals(childOrParent)) {
                     list.add(childOrParent);
                  } 
              } 
              if (!"child".equals(list.get(0))) {
                  String childName = list.get(0);
                  String parentName = list.get(1);
                  String relationType = "1";
                  context.write(new Text(parentName), new Text(relationType + "+"
                        + childName + "+" + parentName));
                  relationType = "2";
                  context.write(new Text(childName), new Text(relationType + "+"
                        + childName + "+" + parentName));
              }
            /********** End **********/
        }
    }
 
    public static class Reduce extends Reducer<Text, Text, Text, Text>{
        public void reduce(Text key, Iterable<Text> values,Context context) throws IOException,InterruptedException{
                /********** Begin **********/
 
                //输出表头
          if (time == 0) {
                context.write(new Text("grand_child"), new Text("grand_parent"));
                time++;
            }
 
                //获取value-list中value的child
List<String> grandChild = new ArrayList<>();
 
                //获取value-list中value的parent
 List<String> grandParent = new ArrayList<>();
 
                //左表,取出child放入grand_child
 for (Text text : values) {
                String s = text.toString();
                String[] relation = s.split("\\+");
                String relationType = relation[0];
                String childName = relation[1];
                String parentName = relation[2];
                if ("1".equals(relationType)) {
                    grandChild.add(childName);
                } else {
                    grandParent.add(parentName);
                }
            }
 
                //右表,取出parent放入grand_parent
 int grandParentNum = grandParent.size();
               int grandChildNum = grandChild.size();
               if (grandParentNum != 0 && grandChildNum != 0) {
                for (int m = 0; m < grandChildNum; m++) {
                    for (int n = 0; n < grandParentNum; n++) {
                        //输出结果
                    context.write(new Text(grandChild.get(m)), new Text(
                                grandParent.get(n)));
                    }
                }
            }
                /********** End **********/
        }
    }
    public static void main(String[] args) throws Exception{
        // TODO Auto-generated method stub
        Configuration conf = new Configuration();
        Job job = Job.getInstance(conf,"Single table join");
        job.setJarByClass(simple_data_mining.class);
        job.setMapperClass(Map.class);
        job.setReducerClass(Reduce.class);
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(Text.class);
        String inputPath = "/user/reduce/input";   //设置输入路径
        String outputPath = "/user/reduce/output";   //设置输出路径
        FileInputFormat.addInputPath(job, new Path(inputPath));
        FileOutputFormat.setOutputPath(job, new Path(outputPath));
        System.exit(job.waitForCompletion(true) ? 0 : 1);
 
    }
}

;