Bootstrap

Netty

资料来源:Netty-黑马程序员

一、Netty入门

1.1 概述

Netty是什么?

Netty 是一个异步的、基于事件驱动的网络应用框架,用于快速开发可维护、高性能的网络服务器和客户端。

Netty的应用

Netty 在 Java 网络应用框架中的地位就好比:Spring 框架在 JavaEE 开发中的地位。以下的框架都使用了 Netty,因为它们有网络通信需求:

  • Cassandra - nosql 数据库
  • Spark - 大数据分布式计算框架
  • Hadoop - 大数据分布式存储框架
  • RocketMQ - ali 开源的消息队列
  • ElasticSearch - 搜索引擎
  • gRPC - rpc 框架
  • Dubbo - rpc 框架
  • Spring 5.x - flux api 完全抛弃了 tomcat ,使用 netty 作为服务器端
  • Zookeeper - 分布式协调框架

Netty的优势

  • Netty vs NIO,工作量大,bug 多
    • 需要自己构建协议
    • 解决 TCP 传输问题,如粘包、半包
    • epoll 空轮询导致 CPU 100%
    • 对 API 进行增强,使之更易用,如 FastThreadLocal => ThreadLocal,ByteBuf => ByteBuffer
  • Netty vs 其它网络应用框架
    • Mina 由 apache 维护,将来 3.x 版本可能会有较大重构,破坏 API 向下兼容性,Netty 的开发迭代更迅速,API 更简洁、文档更优秀
    • 久经考验,16年,Netty 版本
      • 2.x 2004
      • 3.x 2008
      • 4.x 2013
      • 5.x 已废弃(没有明显的性能提升,维护成本高)

1.2 示例

1.2.1 目标

开发一个简单的服务器端和客户端

  • 客户端向服务器端发送 hello, world
  • 服务器仅接收,不返回

加入依赖

<dependency>
    <groupId>io.netty</groupId>
    <artifactId>netty-all</artifactId>
    <version>4.1.39.Final</version>
</dependency>

1.2.2 服务器端

new ServerBootstrap()
    .group(new NioEventLoopGroup()) // 1
    .channel(NioServerSocketChannel.class) // 2
    .childHandler(new ChannelInitializer<NioSocketChannel>() { // 3
        protected void initChannel(NioSocketChannel ch) {
            ch.pipeline().addLast(new StringDecoder()); // 5
            ch.pipeline().addLast(new SimpleChannelInboundHandler<String>() { // 6
                @Override
                protected void channelRead0(ChannelHandlerContext ctx, String msg) {
                    System.out.println(msg);
                }
            });
        }
    })
    .bind(8080); // 4

代码解读

  • 1 处,创建 NioEventLoopGroup,可以简单理解为 线程池 + Selector
  • 2 处,选择服务 Scoket 实现类,其中 NioServerSocketChannel 表示基于 NIO 的服务器端实现,其它实现还有

  • 3 处,为啥方法叫 childHandler,是接下来添加的处理器都是给 SocketChannel 用的,而不是给 ServerSocketChannel。ChannelInitializer 处理器(仅执行一次),它的作用是待客户端 SocketChannel 建立连接后,执行 initChannel 以便添加更多的处理器
  • 4 处,ServerSocketChannel 绑定的监听端口
  • 5 处,SocketChannel 的处理器,解码 ByteBuf => String
  • 6 处,SocketChannel 的业务处理器,使用上一个处理器的处理结果

1.2.3 客户端

new Bootstrap()
    .group(new NioEventLoopGroup()) // 1
    .channel(NioSocketChannel.class) // 2
    .handler(new ChannelInitializer<Channel>() { // 3
        @Override
        protected void initChannel(Channel ch) {
            ch.pipeline().addLast(new StringEncoder()); // 8
        }
    })
    .connect("127.0.0.1", 8080) // 4
    .sync() // 5
    .channel() // 6
    .writeAndFlush(new Date() + ": hello world!"); // 7

代码解读

  • 1 处,创建 NioEventLoopGroup,同 Server
  • 2 处,选择客户 Socket 实现类,NioSocketChannel 表示基于 NIO 的客户端实现,其它实现还有

  • 3 处,添加 SocketChannel 的处理器,ChannelInitializer 处理器(仅执行一次),它的作用是待客户端 SocketChannel 建立连接后,执行 initChannel 以便添加更多的处理器
  • 4 处,指定要连接的服务器和端口
  • 5 处,Netty 中很多方法都是异步的,如 connect,这时需要使用 sync 方法等待 connect 建立连接完毕
  • 6 处,获取 channel 对象,它即为通道抽象,可以进行数据读写操作
  • 7 处,写入消息并清空缓冲区
  • 8 处,消息会经过通道 handler 处理,这里是将 String => ByteBuf 发出
  • 数据经过网络传输,到达服务器端,服务器端 5 和 6 处的 handler 先后被触发,走完一个流程

1.2.4 流程梳理

  • 把 channel 理解为数据的通道
  • 把 msg 理解为流动的数据,最开始输入是 ByteBuf,但经过 pipeline 的加工,会变成其它类型对象,最后输出又变成 ByteBuf
  • 把 handler 理解为数据的处理工序
    • 工序有多道,合在一起就是 pipeline,pipeline 负责发布事件(读、读取完成...)传播给每个 handler, handler 对自己感兴趣的事件进行处理(重写了相应事件处理方法)
    • handler 分 Inbound 和 Outbound 两类
  • 把 eventLoop 理解为处理数据的工人
    • 工人可以管理多个 channel 的 io 操作,并且一旦工人负责了某个 channel,就要负责到底(绑定)
    • 工人既可以执行 io 操作,也可以进行任务处理,每位工人有任务队列,队列里可以堆放多个 channel 的待处理任务,任务分为普通任务、定时任务
    • 工人按照 pipeline 顺序,依次按照 handler 的规划(代码)处理数据,可以为每道工序指定不同的工人

1.3 组件

1.3.1 EventLoop

1.3.1.1 事件循环对象

EventLoop 本质是一个单线程执行器(同时维护了一个 Selector),里面有 run 方法处理 Channel 上源源不断的 io 事件。

继承关系比较复杂:

  • 一条线是继承自 j.u.c.ScheduledExecutorService, 因此包含了线程池中所有的方法
  • 另一条线是继承自 netty 自己的 OrderedEventExecutor,
    • 提供了 boolean inEventLoop(Thread thread) 方法判断一个线程是否属于此 EventLoop
    • 提供了 parent 方法来看看自己属于哪个 EventLoopGroup
1.3.1.2 事件循环组

EventLoopGroup 是一组 EventLoop。

Channel 一般会调用 EventLoopGroup 的 register 方法来绑定其中一个 EventLoop,后续这个 Channel 上的 io 事件都由此 EventLoop 来处理(保证了 io 事件处理时的线程安全)。

  • 继承自 netty 自己的 EventExecutorGroup
    • 实现了 Iterable 接口提供遍历 EventLoop 的能力
    • 另有 next 方法获取集合中下一个 EventLoop

以一个简单的实现为例:

// 内部创建了两个 EventLoop, 每个 EventLoop 维护一个线程
DefaultEventLoopGroup group = new DefaultEventLoopGroup(2);
System.out.println(group.next());
System.out.println(group.next());
System.out.println(group.next());

输出

io.netty.channel.DefaultEventLoop@60f82f98
io.netty.channel.DefaultEventLoop@35f983a6
io.netty.channel.DefaultEventLoop@60f82f98

也可以使用 for 循环

DefaultEventLoopGroup group = new DefaultEventLoopGroup(2);
for (EventExecutor eventLoop : group) {
    System.out.println(eventLoop);
}

输出

io.netty.channel.DefaultEventLoop@60f82f98
io.netty.channel.DefaultEventLoop@35f983a6

优雅关闭

优雅关闭 shutdownGracefully 方法。

该方法会首先切换 EventLoopGroup 到关闭状态从而拒绝新的任务的加入,然后在任务队列的任务都处理完成后,停止线程的运行。从而确保整体应用是在正常有序的状态下退出的。

1.3.1.3 IO演示

服务器端两个 nio worker 工人

new ServerBootstrap()
    .group(new NioEventLoopGroup(1), new NioEventLoopGroup(2))
    .channel(NioServerSocketChannel.class)
    .childHandler(new ChannelInitializer<NioSocketChannel>() {
        @Override
        protected void initChannel(NioSocketChannel ch) {
            ch.pipeline().addLast(new ChannelInboundHandlerAdapter() {
                @Override
                public void channelRead(ChannelHandlerContext ctx, Object msg) {
                    ByteBuf byteBuf = msg instanceof ByteBuf ? ((ByteBuf) msg) : null;
                    if (byteBuf != null) {
                        byte[] buf = new byte[16];
                        ByteBuf len = byteBuf.readBytes(buf, 0, byteBuf.readableBytes());
                        log.debug(new String(buf));
                    }
                }
            });
        }
    }).bind(8080).sync();

客户端,启动三次,分别修改发送字符串为 zhangsan(第一次),lisi(第二次),wangwu(第三次)

public static void main(String[] args) throws InterruptedException {
    Channel channel = new Bootstrap()
            .group(new NioEventLoopGroup(1))
            .handler(new ChannelInitializer<NioSocketChannel>() {
                @Override
                protected void initChannel(NioSocketChannel ch) throws Exception {
                    System.out.println("init...");
                    ch.pipeline().addLast(new LoggingHandler(LogLevel.DEBUG));
                }
            })
            .channel(NioSocketChannel.class).connect("localhost", 8080)
            .sync()
            .channel();

    channel.writeAndFlush(ByteBufAllocator.DEFAULT.buffer().writeBytes("wangwu".getBytes()));
    Thread.sleep(2000);
    channel.writeAndFlush(ByteBufAllocator.DEFAULT.buffer().writeBytes("wangwu".getBytes()));

最后输出

22:03:34 [DEBUG] [nioEventLoopGroup-3-1] c.i.o.EventLoopTest - zhangsan       
22:03:36 [DEBUG] [nioEventLoopGroup-3-1] c.i.o.EventLoopTest - zhangsan       
22:05:36 [DEBUG] [nioEventLoopGroup-3-2] c.i.o.EventLoopTest - lisi           
22:05:38 [DEBUG] [nioEventLoopGroup-3-2] c.i.o.EventLoopTest - lisi           
22:06:09 [DEBUG] [nioEventLoopGroup-3-1] c.i.o.EventLoopTest - wangwu        
22:06:11 [DEBUG] [nioEventLoopGroup-3-1] c.i.o.EventLoopTest - wangwu         

可以看到两个工人轮流处理 channel,但工人与 channel 之间进行了绑定

再增加两个非 nio 工人

DefaultEventLoopGroup normalWorkers = new DefaultEventLoopGroup(2);
new ServerBootstrap()
    .group(new NioEventLoopGroup(1), new NioEventLoopGroup(2))
    .channel(NioServerSocketChannel.class)
    .childHandler(new ChannelInitializer<NioSocketChannel>() {
        @Override
        protected void initChannel(NioSocketChannel ch)  {
            ch.pipeline().addLast(new LoggingHandler(LogLevel.DEBUG));
            ch.pipeline().addLast(normalWorkers,"myhandler",
              new ChannelInboundHandlerAdapter() {
                @Override
                public void channelRead(ChannelHandlerContext ctx, Object msg) {
                    ByteBuf byteBuf = msg instanceof ByteBuf ? ((ByteBuf) msg) : null;
                    if (byteBuf != null) {
                        byte[] buf = new byte[16];
                        ByteBuf len = byteBuf.readBytes(buf, 0, byteBuf.readableBytes());
                        log.debug(new String(buf));
                    }
                }
            });
        }
    }).bind(8080).sync();

客户端代码不变,启动三次,分别修改发送字符串为 zhangsan(第一次),lisi(第二次),wangwu(第三次)

输出

      ...
         +-------------------------------------------------+
         |  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 7a 68 61 6e 67 73 61 6e                         |zhangsan        |
+--------+-------------------------------------------------+----------------+
22:19:50 [DEBUG] [defaultEventLoopGroup-2-1] c.i.o.EventLoopTest - zhangsan                
...
         +-------------------------------------------------+
         |  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 6c 69 73 69                                     |lisi            |
+--------+-------------------------------------------------+----------------+
...
22:20:27 [DEBUG] [defaultEventLoopGroup-2-2] c.i.o.EventLoopTest - lisi            
...
         +-------------------------------------------------+
         |  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 77 61 6e 67 77 75                               |wangwu          |
+--------+-------------------------------------------------+----------------+
...
22:20:38 [DEBUG] [defaultEventLoopGroup-2-1] c.i.o.EventLoopTest - wangwu          
...      

可以看到,nio 工人和 非 nio 工人也分别绑定了 channel(LoggingHandler 由 nio 工人执行,而我们自己的 handler 由非 nio 工人执行)

handler 执行中如何换人?

关键代码 io.netty.channel.AbstractChannelHandlerContext#invokeChannelRead()

static void invokeChannelRead(final AbstractChannelHandlerContext next, Object msg) {
    final Object m = next.pipeline.touch(ObjectUtil.checkNotNull(msg, "msg"), next);
    // 下一个 handler 的事件循环是否与当前的事件循环是同一个线程
    EventExecutor executor = next.executor();

    // 是,直接调用
    if (executor.inEventLoop()) {
        next.invokeChannelRead(m);
    } 
    // 不是,将要执行的代码作为任务提交给下一个事件循环处理(换人)
    else {
        executor.execute(new Runnable() {
            @Override
            public void run() {
                next.invokeChannelRead(m);
            }
        });
    }
}
  • 如果两个 handler 绑定的是同一个线程,那么就直接调用
  • 否则,把要调用的代码封装为一个任务对象,由下一个 handler 的线程来调用
1.3.1.4普通任务演示

NioEventLoop 除了可以处理 io 事件,同样可以向它提交普通任务

NioEventLoopGroup nioWorkers = new NioEventLoopGroup(2);

log.debug("server start...");
Thread.sleep(2000);
nioWorkers.execute(()->{
    log.debug("normal task...");
});

输出

22:30:36 [DEBUG] [main] c.i.o.EventLoopTest2 - server start...
22:30:38 [DEBUG] [nioEventLoopGroup-2-1] c.i.o.EventLoopTest2 - normal task...

可以用来执行耗时较长的任务

1.3.1.5 定时任务演示
NioEventLoopGroup nioWorkers = new NioEventLoopGroup(2);

log.debug("server start...");
Thread.sleep(2000);
nioWorkers.scheduleAtFixedRate(() -> {
    log.debug("running...");
}, 0, 1, TimeUnit.SECONDS);

输出

22:35:15 [DEBUG] [main] c.i.o.EventLoopTest2 - server start...
22:35:17 [DEBUG] [nioEventLoopGroup-2-1] c.i.o.EventLoopTest2 - running...
22:35:18 [DEBUG] [nioEventLoopGroup-2-1] c.i.o.EventLoopTest2 - running...
22:35:19 [DEBUG] [nioEventLoopGroup-2-1] c.i.o.EventLoopTest2 - running...
22:35:20 [DEBUG] [nioEventLoopaGroup-2-1] c.i.o.EventLoopTest2 - running...
...

可以用来执行定时任务

1.3.2 Channel

channel 的主要作用

  • close() 可以用来关闭 channel
  • closeFuture() 用来处理 channel 的关闭
    • sync 方法作用是同步等待 channel 关闭
    • 而 addListener 方法是异步等待 channel 关闭
  • pipeline() 方法添加处理器
  • write() 方法将数据写入
  • writeAndFlush() 方法将数据写入并刷出
1.3.2.1 ChannelFuture

netty的connect方法是异步的,调用后返回的对象不是确定的连接信息,所以用ChannelFuture来接收。

客户端代码:

new Bootstrap()
    .group(new NioEventLoopGroup())
    .channel(NioSocketChannel.class)
    .handler(new ChannelInitializer<Channel>() {
        @Override
        protected void initChannel(Channel ch) {
            ch.pipeline().addLast(new StringEncoder());
        }
    })
    .connect("127.0.0.1", 8080)
    .sync()
    .channel()
    .writeAndFlush(new Date() + ": hello world!");

拆开来看:

ChannelFuture channelFuture = new Bootstrap()
    .group(new NioEventLoopGroup())
    .channel(NioSocketChannel.class)
    .handler(new ChannelInitializer<Channel>() {
        @Override
        protected void initChannel(Channel ch) {
            ch.pipeline().addLast(new StringEncoder());
        }
    })
    .connect("127.0.0.1", 8080); // 1

channelFuture.sync().channel().writeAndFlush(new Date() + ": hello world!");

1 处返回的是 ChannelFuture 对象,它的作用是利用 channel() 方法来获取 Channel 对象。

注意 :

connect 方法是异步的,意味着不等连接建立,方法执行就返回了。因此 channelFuture 对象中不能【立刻】获得到正确的 Channel 对象。

ChannelFuture channelFuture = new Bootstrap()
    .group(new NioEventLoopGroup())
    .channel(NioSocketChannel.class)
    .handler(new ChannelInitializer<Channel>() {
        @Override
        protected void initChannel(Channel ch) {
            ch.pipeline().addLast(new StringEncoder());
        }
    })
    .connect("127.0.0.1", 8080);

System.out.println(channelFuture.channel()); // 1
channelFuture.sync(); // 2
System.out.println(channelFuture.channel()); // 3
  • 执行到 1 时,连接未建立,打印 [id: 0x2e1884dd]
  • 执行到 2 时,sync 方法是同步等待连接建立完成
  • 执行到 3 时,连接肯定建立了,打印 [id: 0x2e1884dd, L:/127.0.0.1:57191 - R:/127.0.0.1:8080]

回调的方式

除了用 sync 方法可以让异步操作同步以外,还可以使用回调

ChannelFuture channelFuture = new Bootstrap()
    .group(new NioEventLoopGroup())
    .channel(NioSocketChannel.class)
    .handler(new ChannelInitializer<Channel>() {
        @Override
        protected void initChannel(Channel ch) {
            ch.pipeline().addLast(new StringEncoder());
        }
    })
    .connect("127.0.0.1", 8080);
System.out.println(channelFuture.channel()); // 1
channelFuture.addListener((ChannelFutureListener) future -> {
    System.out.println(future.channel()); // 2
});
  • 执行到 1 时,连接未建立,打印 [id: 0x749124ba]
  • ChannelFutureListener 会在连接建立时被调用(其中 operationComplete 方法),因此执行到 2 时,连接肯定建立了,打印 [id: 0x749124ba, L:/127.0.0.1:57351 - R:/127.0.0.1:8080]
1.3.2.2 CloseFuture

channel的关闭也不是同步的,所以调用close后,返回的是closeFuture对象。

@Slf4j
public class CloseFutureClient {
    public static void main(String[] args) throws InterruptedException {
        NioEventLoopGroup group new NioEventLoopGroup();
        ChannelFuture channelFuture = new Bootstrap()
                .group(group)
                .channel(NioSocketChannel.class)
                .handler(new ChannelInitializer<NioSocketChannel>() {
                    @Override // 在连接建立后被调用
                    protected void initChannel(NioSocketChannel ch) throws Exception {
                        ch.pipeline().addLast(new LoggingHandler(LogLevel.DEBUG));
                        ch.pipeline().addLast(new StringEncoder());
                    }
                })
                .connect(new InetSocketAddress("localhost", 8080));
        Channel channel = channelFuture.sync().channel();
        log.debug("{}", channel);
        new Thread(()->{
            Scanner scanner = new Scanner(System.in);
            while (true) {
                String line = scanner.nextLine();
                if ("q".equals(line)) {
                    channel.close(); // close 异步操作 1s 之后
//                    log.debug("处理关闭之后的操作"); // 不能在这里善后
                    break;
                }
                channel.writeAndFlush(line);
            }
        }, "input").start();

        // 获取 CloseFuture 对象, 1) 同步处理关闭, 2) 异步处理关闭
        ChannelFuture closeFuture = channel.closeFuture();
        closeFuture.addListener(new ChannelFutureListener() {
            @Override
            public void operationComplete(ChannelFuture future) throws Exception {
                log.debug("处理关闭之后的操作");
                group.shutdownGracefully();
            }
        });
    }
}
1.3.2.3 异步提升解释

为什么不在一个线程中去执行建立连接、去执行关闭 channel,那样不是也可以吗?

非要用这么复杂的异步方式:比如一个线程发起建立连接,另一个线程去真正建立连接。

有些人笼统地回答,因为 netty 异步方式用了多线程、多线程就效率高。其实这些认识都比较片面,多线程和异步所提升的效率并不是所认为的。

思考下面的场景,4 个医生给人看病,每个病人花费 20 分钟,而且医生看病的过程中是以病人为单位的,一个病人看完了,才能看下一个病人。假设病人源源不断地来,可以计算一下 4 个医生一天工作 8 小时,处理的病人总数是:4 * 8 * 3 = 96

经研究发现,看病可以细分为四个步骤,经拆分后每个步骤需要 5 分钟,如下

因此可以做如下优化,只有一开始,医生 2、3、4 分别要等待 5、10、15 分钟才能执行工作,但只要后续病人源源不断地来,他们就能够满负荷工作,并且处理病人的能力提高到了 4 * 8 * 12 效率几乎是原来的四倍

要点

  • 单线程没法异步提高效率,必须配合多线程、多核 cpu 才能发挥异步的优势
  • 异步并没有缩短响应时间,反而有所增加
  • 合理进行任务拆分,也是利用异步的关键

1.3.3 Future & Promise

在异步处理时,经常用到这两个接口

首先要说明 netty 中的 Future 与 jdk 中的 Future 同名,但是是两个接口,netty 的 Future 继承自 jdk 的 Future,而 Promise 又对 netty Future 进行了扩展

  • jdk Future 只能同步等待任务结束(或成功、或失败)才能得到结果
  • netty Future 可以同步等待任务结束得到结果,也可以异步方式得到结果,但都是要等任务结束
  • netty Promise 不仅有 netty Future 的功能,而且脱离了任务独立存在,只作为两个线程间传递结果的容器

功能/名称

jdk Future

netty Future

Promise

cancel

取消任务

-

-

isCanceled

任务是否取消

-

-

isDone

任务是否完成,不能区分成功失败

-

-

get

获取任务结果,阻塞等待

-

-

getNow

-

获取任务结果,非阻塞,还未产生结果时返回 null

-

await

-

等待任务结束,如果任务失败,不会抛异常,而是通过 isSuccess 判断

-

sync

-

等待任务结束,如果任务失败,抛出异常

-

isSuccess

-

判断任务是否成功

-

cause

-

获取失败信息,非阻塞,如果没有失败,返回null

-

addLinstener

-

添加回调,异步接收结果

-

setSuccess

-

-

设置成功结果

setFailure

-

-

设置失败结果

示例:同步处理任务成功

promise作为线程间的传递对象,并使用同步方法get()获取值。

DefaultEventLoop eventExecutors = new DefaultEventLoop();
DefaultPromise<Integer> promise = new DefaultPromise<>(eventExecutors);

eventExecutors.execute(()->{
    try {
        Thread.sleep(1000);
    } catch (InterruptedException e) {
        e.printStackTrace();
    }
    log.debug("set success, {}",10);
    promise.setSuccess(10);
});

log.debug("start...");
log.debug("{}",promise.getNow()); // 还没有结果
log.debug("{}",promise.get());

输出

11:51:53 [DEBUG] [main] c.i.o.DefaultPromiseTest2 - start...
11:51:53 [DEBUG] [main] c.i.o.DefaultPromiseTest2 - null
11:51:54 [DEBUG] [defaultEventLoop-1-1] c.i.o.DefaultPromiseTest2 - set success, 10
11:51:54 [DEBUG] [main] c.i.o.DefaultPromiseTest2 - 10

示例:异步处理任务成功

通过设置监听器,异步处理promise的值。

DefaultEventLoop eventExecutors = new DefaultEventLoop();
DefaultPromise<Integer> promise = new DefaultPromise<>(eventExecutors);

// 设置回调,异步接收结果
promise.addListener(future -> {
    log.debug("promise:{}", future.getNow());
});

// 等待 1000 后设置成功结果
eventExecutors.execute(() -> {
    try {
        Thread.sleep(1000);
    } catch (InterruptedException e) {
        e.printStackTrace();
    }
    log.debug("set success, {}", 10);
    promise.setSuccess(10);
});

log.debug("start...");

输出

23:59:19 [DEBUG] [main] c.i.n.c.TestNettyPromise - start...
23:59:20 [DEBUG] [defaultEventLoop-1-1] c.i.n.c.TestNettyPromise - set success, 10
23:59:20 [DEBUG] [defaultEventLoop-1-1] c.i.n.c.TestNettyPromise - promise:10

示例:同步处理任务失败

promise接收到异常值时,并使用同步方法get()获取值时的处理情况。

DefaultEventLoop eventExecutors = new DefaultEventLoop();
DefaultPromise<Integer> promise = new DefaultPromise<>(eventExecutors);

eventExecutors.execute(() -> {
    try {
        Thread.sleep(1000);
    } catch (InterruptedException e) {
        e.printStackTrace();
    }
    RuntimeException e = new RuntimeException("error...");
    log.debug("set failure, {}", e.toString());
    promise.setFailure(e);
});

log.debug("start...");
log.debug("promise:{}", promise.getNow());
//异常
log.debug("promise:{}", promise.get());

输出

00:02:22 [DEBUG] [main] c.i.n.c.TestNettyPromise - start...
00:02:22 [DEBUG] [main] c.i.n.c.TestNettyPromise - promise:null
00:02:23 [DEBUG] [defaultEventLoop-1-1] c.i.n.c.TestNettyPromise - set failure, java.lang.RuntimeException: error...
Exception in thread "main" java.util.concurrent.ExecutionException: java.lang.RuntimeException: error...
    at io.netty.util.concurrent.AbstractFuture.get(AbstractFuture.java:41)
    at cn.itcast.netty.c3.TestNettyPromise.testSyncFail(TestNettyPromise.java:36)
    at cn.itcast.netty.c3.TestNettyPromise.main(TestNettyPromise.java:15)
Caused by: java.lang.RuntimeException: error...
    at cn.itcast.netty.c3.TestNettyPromise.lambda$testSyncFail$0(TestNettyPromise.java:28)
    at io.netty.channel.DefaultEventLoop.run(DefaultEventLoop.java:54)
    at io.netty.util.concurrent.SingleThreadEventExecutor$5.run(SingleThreadEventExecutor.java:918)
    at io.netty.util.internal.ThreadExecutorMap$2.run(ThreadExecutorMap.java:74)
    at io.netty.util.concurrent.FastThreadLocalRunnable.run(FastThreadLocalRunnable.java:30)
    at java.lang.Thread.run(Thread.java:750)

示例:同步处理任务失败

通过promise的await()方法同步等待值。可以自行处理结果,避免异常情况。

DefaultEventLoop eventExecutors = new DefaultEventLoop();
DefaultPromise<Integer> promise = new DefaultPromise<>(eventExecutors);

eventExecutors.execute(() -> {
    try {
        Thread.sleep(1000);
    } catch (InterruptedException e) {
        e.printStackTrace();
    }
    RuntimeException e = new RuntimeException("error...");
    log.debug("set failure, {}", e.toString());
    promise.setFailure(e);
});

log.debug("start...");
log.debug("{}", promise.getNow());
promise.await(); // 与 sync 和 get 区别在于,不会抛异常
log.debug("result {}", (promise.isSuccess() ? promise.getNow() : promise.cause()).toString());

输出

12:18:53 [DEBUG] [main] c.i.o.DefaultPromiseTest2 - start...
12:18:53 [DEBUG] [main] c.i.o.DefaultPromiseTest2 - null
12:18:54 [DEBUG] [defaultEventLoop-1-1] c.i.o.DefaultPromiseTest2 - set failure, java.lang.RuntimeException: error...
12:18:54 [DEBUG] [main] c.i.o.DefaultPromiseTest2 - result java.lang.RuntimeException: error...

示例:异步处理任务失败

通过注册监听器,实现异步处理结果。也可以自行处理结果,避免异常情况。

DefaultEventLoop eventExecutors = new DefaultEventLoop();
DefaultPromise<Integer> promise = new DefaultPromise<>(eventExecutors);

promise.addListener(future -> {
    log.debug("result {}", (promise.isSuccess() ? promise.getNow() : promise.cause()).toString());
});

eventExecutors.execute(() -> {
    try {
        Thread.sleep(1000);
    } catch (InterruptedException e) {
        e.printStackTrace();
    }
    RuntimeException e = new RuntimeException("error...");
    log.debug("set failure, {}", e.toString());
    promise.setFailure(e);
});

log.debug("start...");

输出

12:04:57 [DEBUG] [main] c.i.o.DefaultPromiseTest2 - start...
12:04:58 [DEBUG] [defaultEventLoop-1-1] c.i.o.DefaultPromiseTest2 - set failure, java.lang.RuntimeException: error...
12:04:58 [DEBUG] [defaultEventLoop-1-1] c.i.o.DefaultPromiseTest2 - result java.lang.RuntimeException: error...

示例:await 异常情况

DefaultEventLoop eventExecutors = new DefaultEventLoop();
DefaultPromise<Integer> promise = new DefaultPromise<>(eventExecutors);

eventExecutors.submit(() -> {
    System.out.println("1");
    try {
        // 注意不能仅捕获 InterruptedException 异常
        // 否则 死锁检查抛出的 BlockingOperationException 会继续向上传播
        // 而提交的任务会被包装为 PromiseTask,它的 run 方法中会 catch 所有异常然后设置为 Promise 的失败结果而不会抛出
        promise.await();
    } catch (Exception e) {
        e.printStackTrace();
    }
    System.out.println("2");
});
eventExecutors.submit(() -> {
    System.out.println("3");
    try {
        promise.await();
    } catch (Exception e) {
        e.printStackTrace();
    }
    System.out.println("4");
});

输出

1
2
3
4
io.netty.util.concurrent.BlockingOperationException: DefaultPromise@47499c2a(incomplete)
    at io.netty.util.concurrent.DefaultPromise.checkDeadLock(DefaultPromise.java:384)
    at io.netty.util.concurrent.DefaultPromise.await(DefaultPromise.java:212)
    at com.itcast.oio.DefaultPromiseTest.lambda$main$0(DefaultPromiseTest.java:27)
    at io.netty.util.concurrent.PromiseTask$RunnableAdapter.call(PromiseTask.java:38)
    at io.netty.util.concurrent.PromiseTask.run(PromiseTask.java:73)
    at io.netty.channel.DefaultEventLoop.run(DefaultEventLoop.java:54)
    at io.netty.util.concurrent.SingleThreadEventExecutor$5.run(SingleThreadEventExecutor.java:918)
    at io.netty.util.internal.ThreadExecutorMap$2.run(ThreadExecutorMap.java:74)
    at io.netty.util.concurrent.FastThreadLocalRunnable.run(FastThreadLocalRunnable.java:30)
    at java.lang.Thread.run(Thread.java:745)
...

1.3.4 Handler & Pipeline

ChannelHandler 用来处理 Channel 上的各种事件,分为入站、出站两种。所有 ChannelHandler 被连成一串,就是 Pipeline

  • 入站处理器通常是 ChannelInboundHandlerAdapter 的子类,主要用来读取客户端数据,写回结果
  • 出站处理器通常是 ChannelOutboundHandlerAdapter 的子类,主要对写回结果进行加工

打个比喻,每个 Channel 是一个产品的加工车间,Pipeline 是车间中的流水线,ChannelHandler 就是流水线上的各道工序,而后面要讲的 ByteBuf 是原材料,经过很多工序的加工:先经过一道道入站工序,再经过一道道出站工序最终变成产品。

服务端:

new ServerBootstrap()
    .group(new NioEventLoopGroup())
    .channel(NioServerSocketChannel.class)
    .childHandler(new ChannelInitializer<NioSocketChannel>() {
        protected void initChannel(NioSocketChannel ch) {
            ch.pipeline().addLast(new ChannelInboundHandlerAdapter(){
                @Override
                public void channelRead(ChannelHandlerContext ctx, Object msg) {
                    System.out.println(1);
                    ctx.fireChannelRead(msg); // 1
                }
            });
            ch.pipeline().addLast(new ChannelInboundHandlerAdapter(){
                @Override
                public void channelRead(ChannelHandlerContext ctx, Object msg) {
                    System.out.println(2);
                    ctx.fireChannelRead(msg); // 2
                }
            });
            ch.pipeline().addLast(new ChannelInboundHandlerAdapter(){
                @Override
                public void channelRead(ChannelHandlerContext ctx, Object msg) {
                    System.out.println(3);
                    ctx.channel().write(msg); // 3
                }
            });
            ch.pipeline().addLast(new ChannelOutboundHandlerAdapter(){
                @Override
                public void write(ChannelHandlerContext ctx, Object msg, 
                                  ChannelPromise promise) {
                    System.out.println(4);
                    ctx.write(msg, promise); // 4
                }
            });
            ch.pipeline().addLast(new ChannelOutboundHandlerAdapter(){
                @Override
                public void write(ChannelHandlerContext ctx, Object msg, 
                                  ChannelPromise promise) {
                    System.out.println(5);
                    ctx.write(msg, promise); // 5
                }
            });
            ch.pipeline().addLast(new ChannelOutboundHandlerAdapter(){
                @Override
                public void write(ChannelHandlerContext ctx, Object msg, 
                                  ChannelPromise promise) {
                    System.out.println(6);
                    ctx.write(msg, promise); // 6
                }
            });
        }
    })
    .bind(8080);

客户端:

new Bootstrap()
    .group(new NioEventLoopGroup())
    .channel(NioSocketChannel.class)
    .handler(new ChannelInitializer<Channel>() {
        @Override
        protected void initChannel(Channel ch) {
            ch.pipeline().addLast(new StringEncoder());
        }
    })
    .connect("127.0.0.1", 8080)
    .addListener((ChannelFutureListener) future -> {
        future.channel().writeAndFlush("hello,world");
    });

服务器端打印:

1
2
3
6
5
4

可以看到,ChannelInboundHandlerAdapter 是按照 addLast 的顺序执行的,而 ChannelOutboundHandlerAdapter 是按照 addLast 的逆序执行的。ChannelPipeline 的实现是一个 ChannelHandlerContext(包装了 ChannelHandler) 组成的双向链表

  • 入站处理器中,ctx.fireChannelRead(msg) 是 调用下一个入站处理器
    • 如果注释掉 1 处代码,则仅会打印 1
    • 如果注释掉 2 处代码,则仅会打印 1 2
  • 3 处的 ctx.channel().write(msg) 会 从尾部开始触发 后续出站处理器的执行
    • 如果注释掉 3 处代码,则仅会打印 1 2 3
  • 类似的,出站处理器中,ctx.write(msg, promise) 的调用也会 触发上一个出站处理器
    • 如果注释掉 6 处代码,则仅会打印 1 2 3 6
  • ctx.channel().write(msg) vs ctx.write(msg)
    • 都是触发出站处理器的执行
    • ctx.channel().write(msg) 从尾部开始查找出站处理器
    • ctx.write(msg) 是从当前节点找上一个出站处理器
    • 3 处的 ctx.channel().write(msg) 如果改为 ctx.write(msg) 仅会打印 1 2 3,因为节点3 之前没有其它出站处理器了
    • 6 处的 ctx.write(msg, promise) 如果改为 ctx.channel().write(msg) 会打印 1 2 3 6 6 6... 因为 ctx.channel().write() 是从尾部开始查找,结果又是节点6 自己

图1 - 服务端 pipeline 触发的原始流程,图中数字代表了处理步骤的先后次序

1.3.5 ByteBuf

是对字节数据的封装

1)创建

ByteBuf buffer = ByteBufAllocator.DEFAULT.buffer(10);
log(buffer);

上面代码创建了一个默认的 ByteBuf(池化基于直接内存的 ByteBuf),初始容量是 10

输出

read index:0 write index:0 capacity:10

其中 log 方法参考如下

private static void log(ByteBuf buffer) {
    int length = buffer.readableBytes();
    int rows = length / 16 + (length % 15 == 0 ? 0 : 1) + 4;
    StringBuilder buf = new StringBuilder(rows * 80 * 2)
        .append("read index:").append(buffer.readerIndex())
        .append(" write index:").append(buffer.writerIndex())
        .append(" capacity:").append(buffer.capacity())
        .append(NEWLINE);
    appendPrettyHexDump(buf, buffer);
    System.out.println(buf.toString());
}

2)直接内存 vs 堆内存

可以使用下面的代码来创建池化基于堆的 ByteBuf

ByteBuf buffer = ByteBufAllocator.DEFAULT.heapBuffer(10);

也可以使用下面的代码来创建池化基于直接内存的 ByteBuf

ByteBuf buffer = ByteBufAllocator.DEFAULT.directBuffer(10);
  • 直接内存创建和销毁的代价昂贵,但读写性能高(少一次内存复制),适合配合池化功能一起用
  • 直接内存对 GC 压力小,因为这部分内存不受 JVM 垃圾回收的管理,但也要注意及时主动释放

3)池化 vs 非池化

池化的最大意义在于可以重用 ByteBuf,优点有

  • 没有池化,则每次都得创建新的 ByteBuf 实例,这个操作对直接内存代价昂贵,就算是堆内存,也会增加 GC 压力
  • 有了池化,则可以重用池中 ByteBuf 实例,并且采用了与 jemalloc 类似的内存分配算法提升分配效率
  • 高并发时,池化功能更节约内存,减少内存溢出的可能

池化功能是否开启,可以通过下面的系统环境变量来设置

-Dio.netty.allocator.type={unpooled|pooled}
  • 4.1 以后,非 Android 平台默认启用池化实现,Android 平台启用非池化实现
  • 4.1 之前,池化功能还不成熟,默认是非池化实现

4)组成

ByteBuf 由四部分组成

最开始读写指针都在 0 位置

5)写入

方法列表,省略一些不重要的方法

方法签名

含义

备注

writeBoolean(boolean value)

写入 boolean 值

用一字节 01\

writeByte(int value)

写入 byte 值

writeShort(int value)

写入 short 值

writeInt(int value)

写入 int 值

Big Endian,即 0x250,写入后 00 00 02 50

writeIntLE(int value)

写入 int 值

Little Endian,即 0x250,写入后 50 02 00 00

writeLong(long value)

写入 long 值

writeChar(int value)

写入 char 值

writeFloat(float value)

写入 float 值

writeDouble(double value)

写入 double 值

writeBytes(ByteBuf src)

写入 netty 的 ByteBuf

writeBytes(byte[] src)

写入 byte[]

writeBytes(ByteBuffer src)

写入 nio 的 ByteBuffer

int writeCharSequence(CharSequence sequence, Charset charset)

写入字符串

这些方法的未指明返回值的,其返回值都是 ByteBuf,意味着可以链式调用 网络传输,默认习惯是 Big Endian

先写入 4 个字节

ByteBuf buffer = ByteBufAllocator.DEFAULT.heapBuffer(10);
buffer.writeBytes(new byte[]{97, 98, 99, 100});
log(buffer);

结果是

read index:0 write index:4 capacity:10
         +-------------------------------------------------+
         |  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 61 62 63 64                                     |abcd            |
+--------+-------------------------------------------------+----------------+

再写入一个 int 整数,也是 4 个字节

buffer.writeInt(100);
log(buffer);

结果是

read index:0 write index:8 capacity:10
         +-------------------------------------------------+
         |  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 61 62 63 64 00 00 00 64                         |abcd...d        |
+--------+-------------------------------------------------+----------------+

还有一类方法是 set 开头的一系列方法,也可以写入数据,但不会改变写指针位置

6)扩容

再写入一个 int 整数时,容量不够了(初始容量是 10),这时会引发扩容

buffer.writeInt(6);
log(buffer);

扩容规则是:

  • 如何写入后数据大小未超过 512,则选择下一个 16 的整数倍,例如写入后大小为 12 ,则扩容后 capacity 是 16
  • 如果写入后数据大小超过 512,则选择下一个 2^n,例如写入后大小为 513,则扩容后 capacity 是 2^10=1024(2^9=512 已经不够了)
  • 扩容不能超过 max capacity 会报错

结果:

read index:0 write index:12 capacity:16
         +-------------------------------------------------+
         |  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 61 62 63 64 00 00 00 64 00 00 00 63             |abcd...d...c    |
+--------+-------------------------------------------------+----------------+

7)读取

例如读了 4 次,每次一个字节

System.out.println(buffer.readByte());
System.out.println(buffer.readByte());
System.out.println(buffer.readByte());
System.out.println(buffer.readByte());
log(buffer);

读过的内容,就属于废弃部分了,再读只能读那些尚未读取的部分

1
2
3
4
read index:4 write index:12 capacity:16
         +-------------------------------------------------+
         |  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 00 00 00 05 00 00 00 06                         |........        |
+--------+-------------------------------------------------+----------------+

如果需要重复读取 int 整数 5,怎么办?

可以在 read 前先做个标记 mark

buffer.markReaderIndex();
System.out.println(buffer.readInt());
log(buffer);

结果

100
read index:8 write index:12 capacity:16
         +-------------------------------------------------+
         |  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 00 00 00 63                                     |...c            |
+--------+-------------------------------------------------+----------------+

这时要重复读取的话,重置到标记位置 reset

buffer.resetReaderIndex();
log(buffer);

这时:

read index:4 write index:12 capacity:16
         +-------------------------------------------------+
         |  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 00 00 00 64 00 00 00 63                         |...d...c        |
+--------+-------------------------------------------------+----------------+

还有种办法是采用 get 开头的一系列方法,这些方法不会改变 read index

8)retain & release

由于 Netty 中有堆外内存的 ByteBuf 实现,堆外内存最好是手动来释放,而不是等 GC 垃圾回收。

  • UnpooledHeapByteBuf 使用的是 JVM 内存,只需等 GC 回收内存即可
  • UnpooledDirectByteBuf 使用的就是直接内存了,需要特殊的方法来回收内存
  • PooledByteBuf 和它的子类使用了池化机制,需要更复杂的规则来回收内存

回收内存的源码实现,请关注下面方法的不同实现 protected abstract void deallocate()

Netty 这里采用了引用计数法来控制回收内存,每个 ByteBuf 都实现了 ReferenceCounted 接口

  • 每个 ByteBuf 对象的初始计数为 1
  • 调用 release 方法计数减 1,如果计数为 0,ByteBuf 内存被回收
  • 调用 retain 方法计数加 1,表示调用者没用完之前,其它 handler 即使调用了 release 也不会造成回收
  • 当计数为 0 时,底层内存会被回收,这时即使 ByteBuf 对象还在,其各个方法均无法正常使用

谁来负责 release 呢?

不是我们想象的(一般情况下)

ByteBuf buf = ...
try {
    ...
} finally {
    buf.release();
}

请思考,因为 pipeline 的存在,一般需要将 ByteBuf 传递给下一个 ChannelHandler,如果在 finally 中 release 了,就失去了传递性(当然,如果在这个 ChannelHandler 内这个 ByteBuf 已完成了它的使命,那么便无须再传递)

基本规则是,谁是最后使用者,谁负责 release,详细分析如下

  • 起点,对于 NIO 实现来讲,在AbstractNioByteChannel.NioByteUnsafe#read 方法中首次创建 ByteBuf 放入 pipeline(line 163 pipeline.fireChannelRead(byteBuf))
  • 入站 ByteBuf 处理原则
    • 对原始 ByteBuf 不做处理,调用 ctx.fireChannelRead(msg) 向后传递,这时无须 release
    • 将原始 ByteBuf 转换为其它类型的 Java 对象,这时 ByteBuf 就没用了,必须 release
    • 如果不调用 ctx.fireChannelRead(msg) 向后传递,那么也必须 release
    • 注意各种异常,如果 ByteBuf 没有成功传递到下一个 ChannelHandler,必须 release
    • 假设消息一直向后传,那么 TailContext 会负责释放未处理消息(原始的 ByteBuf)
  • 出站 ByteBuf 处理原则
    • 出站消息最终都会转为 ByteBuf 输出,一直向前传,由 HeadContext flush 后 release
  • 异常处理原则
    • 有时候不清楚 ByteBuf 被引用了多少次,但又必须彻底释放,可以循环调用 release 直到返回 true

TailContext 释放未处理消息逻辑

// io.netty.channel.DefaultChannelPipeline#onUnhandledInboundMessage(java.lang.Object)
protected void onUnhandledInboundMessage(Object msg) {
    try {
        logger.debug(
            "Discarded inbound message {} that reached at the tail of the pipeline. " +
            "Please check your pipeline configuration.", msg);
    } finally {
        ReferenceCountUtil.release(msg);
    }
}

具体代码

// io.netty.util.ReferenceCountUtil#release(java.lang.Object)
public static boolean release(Object msg) {
    if (msg instanceof ReferenceCounted) {
        return ((ReferenceCounted) msg).release();
    }
    return false;
}

9)slice

对原始 ByteBuf 进行切片成多个 ByteBuf,切片后的 ByteBuf 并没有发生内存复制,还是使用原始 ByteBuf 的内存.

切片后的 ByteBuf 维护独立的 read,write 指针.

例,原始 ByteBuf 进行一些初始操作

ByteBuf origin = ByteBufAllocator.DEFAULT.buffer(10);
origin.writeBytes(new byte[]{1, 2, 3, 4});
origin.readByte();
System.out.println(ByteBufUtil.prettyHexDump(origin));

输出

         +-------------------------------------------------+
         |  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 02 03 04                                        |...             |
+--------+-------------------------------------------------+----------------+

这时调用 slice 进行切片,无参 slice 是从原始 ByteBuf 的 read index 到 write index 之间的内容进行切片,切片后的 max capacity 被固定为这个区间的大小,因此不能追加 write

ByteBuf slice = origin.slice();
System.out.println(ByteBufUtil.prettyHexDump(slice));
// slice.writeByte(5); 如果执行,会报 IndexOutOfBoundsException 异常

输出

         +-------------------------------------------------+
         |  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 02 03 04                                        |...             |
+--------+-------------------------------------------------+----------------+

如果原始 ByteBuf 再次读操作(又读了一个字节)

origin.readByte();
System.out.println(ByteBufUtil.prettyHexDump(origin));

输出

         +-------------------------------------------------+
         |  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 03 04                                           |..              |
+--------+-------------------------------------------------+----------------+

这时的 slice 不受影响,因为它有独立的读写指针

System.out.println(ByteBufUtil.prettyHexDump(slice));

输出

         +-------------------------------------------------+
         |  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 02 03 04                                        |...             |
+--------+-------------------------------------------------+----------------+

如果 slice 的内容发生了更改

slice.setByte(2, 5);
System.out.println(ByteBufUtil.prettyHexDump(slice));

输出

         +-------------------------------------------------+
         |  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 02 03 04                                        |...             |
+--------+-------------------------------------------------+----------------+

这时,原始 ByteBuf 也会受影响,因为底层都是同一块内存

System.out.println(ByteBufUtil.prettyHexDump(origin));

输出

         +-------------------------------------------------+
         |  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 03 05                                           |..              |
+--------+-------------------------------------------------+----------------+

10)duplicate

截取了原始 ByteBuf 所有内容,并且没有 max capacity 的限制.

也是与原始 ByteBuf 使用同一块底层内存,只是读写指针是独立的

11)copy

会将底层内存数据进行深拷贝,因此无论读写,都与原始 ByteBuf 无关

12)CompositeByteBuf

将多个 ByteBuf 合并为一个逻辑上的 ByteBuf,避免拷贝

有两个 ByteBuf 如下

ByteBuf buf1 = ByteBufAllocator.DEFAULT.buffer(5);
buf1.writeBytes(new byte[]{1, 2, 3, 4, 5});
ByteBuf buf2 = ByteBufAllocator.DEFAULT.buffer(5);
buf2.writeBytes(new byte[]{6, 7, 8, 9, 10});
System.out.println(ByteBufUtil.prettyHexDump(buf1));
System.out.println(ByteBufUtil.prettyHexDump(buf2));

输出

         +-------------------------------------------------+
         |  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 01 02 03 04 05                                  |.....           |
+--------+-------------------------------------------------+----------------+
         +-------------------------------------------------+
         |  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 06 07 08 09 0a                                  |.....           |
+--------+-------------------------------------------------+----------------+

现在需要一个新的 ByteBuf,内容来自于刚才的 buf1 和 buf2,如何实现?

方法1:

ByteBuf buf3 = ByteBufAllocator.DEFAULT.buffer(buf1.readableBytes()+buf2.readableBytes());
buf3.writeBytes(buf1);
buf3.writeBytes(buf2);
System.out.println(ByteBufUtil.prettyHexDump(buf3));

结果

         +-------------------------------------------------+
         |  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 01 02 03 04 05 06 07 08 09 0a                   |..........      |
+--------+-------------------------------------------------+----------------+

这种方法好不好?回答是不太好,因为进行了数据的内存复制操作

方法2:

CompositeByteBuf buf3 = ByteBufAllocator.DEFAULT.compositeBuffer();
// true 表示增加新的 ByteBuf 自动递增 write index, 否则 write index 会始终为 0
buf3.addComponents(true, buf1, buf2);

结果是一样的

         +-------------------------------------------------+
         |  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 01 02 03 04 05 06 07 08 09 0a                   |..........      |
+--------+-------------------------------------------------+----------------+

CompositeByteBuf 是一个组合的 ByteBuf,它内部维护了一个 Component 数组,每个 Component 管理一个 ByteBuf,记录了这个 ByteBuf 相对于整体偏移量等信息,代表着整体中某一段的数据。

  • 优点,对外是一个虚拟视图,组合这些 ByteBuf 不会产生内存复制
  • 缺点,复杂了很多,多次操作会带来性能的损耗

13)Unpooled

Unpooled 是一个工具类,类如其名,提供了非池化的 ByteBuf 创建、组合、复制等操作

这里仅介绍其跟【零拷贝】相关的 wrappedBuffer 方法,可以用来包装 ByteBuf

ByteBuf buf1 = ByteBufAllocator.DEFAULT.buffer(5);
buf1.writeBytes(new byte[]{1, 2, 3, 4, 5});
ByteBuf buf2 = ByteBufAllocator.DEFAULT.buffer(5);
buf2.writeBytes(new byte[]{6, 7, 8, 9, 10});

// 当包装 ByteBuf 个数超过一个时, 底层使用了 CompositeByteBuf
ByteBuf buf3 = Unpooled.wrappedBuffer(buf1, buf2);
System.out.println(ByteBufUtil.prettyHexDump(buf3));

输出

         +-------------------------------------------------+
         |  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 01 02 03 04 05 06 07 08 09 0a                   |..........      |
+--------+-------------------------------------------------+----------------+

也可以用来包装普通字节数组,底层也不会有拷贝操作

ByteBuf buf4 = Unpooled.wrappedBuffer(new byte[]{1, 2, 3}, new byte[]{4, 5, 6});
System.out.println(buf4.getClass());
System.out.println(ByteBufUtil.prettyHexDump(buf4));

输出

class io.netty.buffer.CompositeByteBuf
         +-------------------------------------------------+
         |  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 01 02 03 04 05 06                               |......          |
+--------+-------------------------------------------------+----------------+

ByteBuf 优势

  • 池化 - 可以重用池中 ByteBuf 实例,更节约内存,减少内存溢出的可能
  • 读写指针分离,不需要像 ByteBuffer 一样切换读写模式
  • 可以自动扩容
  • 支持链式调用,使用更流畅
  • 很多地方体现零拷贝,例如 slice、duplicate、CompositeByteBuf

1.4 双向通信

1.4.1 练习

实现一个 echo server

server

new ServerBootstrap()
    .group(new NioEventLoopGroup())
    .channel(NioServerSocketChannel.class)
    .childHandler(new ChannelInitializer<NioSocketChannel>() {
        @Override
        protected void initChannel(NioSocketChannel ch) {
            ch.pipeline().addLast(new ChannelInboundHandlerAdapter(){
                @Override
                public void channelRead(ChannelHandlerContext ctx, Object msg) {
                    ByteBuf buffer = (ByteBuf) msg;
                    System.out.println(buffer.toString(Charset.defaultCharset()));

                    // 建议使用 ctx.alloc() 创建 ByteBuf
                    ByteBuf response = ctx.alloc().buffer();
                    response.writeBytes(buffer);
                    ctx.writeAndFlush(response);
                }
            });
        }
    }).bind(8080);

client

NioEventLoopGroup group = new NioEventLoopGroup();
Channel channel = new Bootstrap()
    .group(group)
    .channel(NioSocketChannel.class)
    .handler(new ChannelInitializer<NioSocketChannel>() {
        @Override
        protected void initChannel(NioSocketChannel ch) throws Exception {
            ch.pipeline().addLast(new StringEncoder());
            ch.pipeline().addLast(new ChannelInboundHandlerAdapter() {
                @Override
                public void channelRead(ChannelHandlerContext ctx, Object msg) {
                    ByteBuf buffer = (ByteBuf) msg;
                    System.out.println(buffer.toString(Charset.defaultCharset()));
                }
            });
        }
    }).connect("127.0.0.1", 8080).sync().channel();

channel.closeFuture().addListener(future -> {
    group.shutdownGracefully();
});

new Thread(() -> {
    Scanner scanner = new Scanner(System.in);
    while (true) {
        String line = scanner.nextLine();
        if ("q".equals(line)) {
            channel.close();
            break;
        }
        channel.writeAndFlush(line);
    }
}).start();

1.4.2 读和写的误解

我最初在认识上有这样的误区,认为只有在 netty,nio 这样的多路复用 IO 模型时,读写才不会相互阻塞,才可以实现高效的双向通信.

但实际上,Java Socket 是全双工的:在任意时刻,线路上存在A 到 B 和 B 到 A 的双向信号传输。

即使是阻塞 IO,读和写是可以同时进行的,只要分别采用读线程和写线程即可,读不会阻塞写、写也不会阻塞读

例如:

public class TestServer {
    public static void main(String[] args) throws IOException {
        ServerSocket ss = new ServerSocket(8888);
        Socket s = ss.accept();

        new Thread(() -> {
            try {
                BufferedReader reader = new BufferedReader(new InputStreamReader(s.getInputStream()));
                while (true) {
                    System.out.println(reader.readLine());
                }
            } catch (IOException e) {
                e.printStackTrace();
            }
        }).start();

        new Thread(() -> {
            try {
                BufferedWriter writer = new BufferedWriter(new OutputStreamWriter(s.getOutputStream()));
                // 例如在这个位置加入 thread 级别断点,可以发现即使不写入数据,也不妨碍前面线程读取客户端数据
                for (int i = 0; i < 100; i++) {
                    writer.write(String.valueOf(i));
                    writer.newLine();
                    writer.flush();
                }
            } catch (IOException e) {
                e.printStackTrace();
            }
        }).start();
    }
}

客户端

public class TestClient {
    public static void main(String[] args) throws IOException {
        Socket s = new Socket("localhost", 8888);

        new Thread(() -> {
            try {
                BufferedReader reader = new BufferedReader(new InputStreamReader(s.getInputStream()));
                while (true) {
                    System.out.println(reader.readLine());
                }
            } catch (IOException e) {
                e.printStackTrace();
            }
        }).start();

        new Thread(() -> {
            try {
                BufferedWriter writer = new BufferedWriter(new OutputStreamWriter(s.getOutputStream()));
                for (int i = 0; i < 100; i++) {
                    writer.write(String.valueOf(i));
                    writer.newLine();
                    writer.flush();
                }
            } catch (IOException e) {
                e.printStackTrace();
            }
        }).start();
    }
}

服务端和客户端都能同时写入和读取。

二、Netty进阶

2.1 粘包与半包

2.1.1 粘包现象

服务端代码

public class HelloWorldServer {
    static final Logger log = LoggerFactory.getLogger(HelloWorldServer.class);
    void start() {
        NioEventLoopGroup boss = new NioEventLoopGroup(1);
        NioEventLoopGroup worker = new NioEventLoopGroup();
        try {
            ServerBootstrap serverBootstrap = new ServerBootstrap();
            serverBootstrap.channel(NioServerSocketChannel.class);
            serverBootstrap.group(boss, worker);
            serverBootstrap.childHandler(new ChannelInitializer<SocketChannel>() {
                @Override
                protected void initChannel(SocketChannel ch) throws Exception {
                    ch.pipeline().addLast(new LoggingHandler(LogLevel.DEBUG));
                    ch.pipeline().addLast(new ChannelInboundHandlerAdapter() {
                        @Override
                        public void channelActive(ChannelHandlerContext ctx) throws Exception {
                            log.debug("connected {}", ctx.channel());
                            super.channelActive(ctx);
                        }

                        @Override
                        public void channelInactive(ChannelHandlerContext ctx) throws Exception {
                            log.debug("disconnect {}", ctx.channel());
                            super.channelInactive(ctx);
                        }
                    });
                }
            });
            ChannelFuture channelFuture = serverBootstrap.bind(8080);
            log.debug("{} binding...", channelFuture.channel());
            channelFuture.sync();
            log.debug("{} bound...", channelFuture.channel());
            channelFuture.channel().closeFuture().sync();
        } catch (InterruptedException e) {
            log.error("server error", e);
        } finally {
            boss.shutdownGracefully();
            worker.shutdownGracefully();
            log.debug("stoped");
        }
    }

    public static void main(String[] args) {
        new HelloWorldServer().start();
    }
}

客户端代码:希望发送 10 个消息,每个消息是 16 字节

public class HelloWorldClient {
    static final Logger log = LoggerFactory.getLogger(HelloWorldClient.class);
    public static void main(String[] args) {
        NioEventLoopGroup worker = new NioEventLoopGroup();
        try {
            Bootstrap bootstrap = new Bootstrap();
            bootstrap.channel(NioSocketChannel.class);
            bootstrap.group(worker);
            bootstrap.handler(new ChannelInitializer<SocketChannel>() {
                @Override
                protected void initChannel(SocketChannel ch) throws Exception {
                    log.debug("connetted...");
                    ch.pipeline().addLast(new ChannelInboundHandlerAdapter() {
                        @Override
                        public void channelActive(ChannelHandlerContext ctx) throws Exception {
                            log.debug("sending...");
                            Random r = new Random();
                            char c = 'a';
                            for (int i = 0; i < 10; i++) {
                                ByteBuf buffer = ctx.alloc().buffer();
                                buffer.writeBytes(new byte[]{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15});
                                ctx.writeAndFlush(buffer);
                            }
                        }
                    });
                }
            });
            ChannelFuture channelFuture = bootstrap.connect("127.0.0.1", 8080).sync();
            channelFuture.channel().closeFuture().sync();

        } catch (InterruptedException e) {
            log.error("client error", e);
        } finally {
            worker.shutdownGracefully();
        }
    }
}

服务器端的某次输出,可以看到一次就接收了 160 个字节,而非分 10 次接收

08:24:46 [DEBUG] [main] c.i.n.HelloWorldServer - [id: 0x81e0fda5] binding...
08:24:46 [DEBUG] [main] c.i.n.HelloWorldServer - [id: 0x81e0fda5, L:/0:0:0:0:0:0:0:0:8080] bound...
08:24:55 [DEBUG] [nioEventLoopGroup-3-1] i.n.h.l.LoggingHandler - [id: 0x94132411, L:/127.0.0.1:8080 - R:/127.0.0.1:58177] REGISTERED
08:24:55 [DEBUG] [nioEventLoopGroup-3-1] i.n.h.l.LoggingHandler - [id: 0x94132411, L:/127.0.0.1:8080 - R:/127.0.0.1:58177] ACTIVE
08:24:55 [DEBUG] [nioEventLoopGroup-3-1] c.i.n.HelloWorldServer - connected [id: 0x94132411, L:/127.0.0.1:8080 - R:/127.0.0.1:58177]
08:24:55 [DEBUG] [nioEventLoopGroup-3-1] i.n.h.l.LoggingHandler - [id: 0x94132411, L:/127.0.0.1:8080 - R:/127.0.0.1:58177] READ: 160B
         +-------------------------------------------------+
         |  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f |................|
|00000010| 00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f |................|
|00000020| 00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f |................|
|00000030| 00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f |................|
|00000040| 00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f |................|
|00000050| 00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f |................|
|00000060| 00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f |................|
|00000070| 00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f |................|
|00000080| 00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f |................|
|00000090| 00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f |................|
+--------+-------------------------------------------------+----------------+
08:24:55 [DEBUG] [nioEventLoopGroup-3-1] i.n.h.l.LoggingHandler - [id: 0x94132411, L:/127.0.0.1:8080 - R:/127.0.0.1:58177] READ COMPLETE

2.1.2 半包现象

客户端代码希望发送 1 个消息,这个消息是 160 字节,代码改为

ByteBuf buffer = ctx.alloc().buffer();
for (int i = 0; i < 10; i++) {
    buffer.writeBytes(new byte[]{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15});
}
ctx.writeAndFlush(buffer);

为现象明显,服务端修改一下接收缓冲区,其它代码不变

serverBootstrap.option(ChannelOption.SO_RCVBUF, 10);

服务器端的某次输出,可以看到接收的消息被分为两节,第一次 20 字节,第二次 140 字节

08:43:49 [DEBUG] [main] c.i.n.HelloWorldServer - [id: 0x4d6c6a84] binding...
08:43:49 [DEBUG] [main] c.i.n.HelloWorldServer - [id: 0x4d6c6a84, L:/0:0:0:0:0:0:0:0:8080] bound...
08:44:23 [DEBUG] [nioEventLoopGroup-3-1] i.n.h.l.LoggingHandler - [id: 0x1719abf7, L:/127.0.0.1:8080 - R:/127.0.0.1:59221] REGISTERED
08:44:23 [DEBUG] [nioEventLoopGroup-3-1] i.n.h.l.LoggingHandler - [id: 0x1719abf7, L:/127.0.0.1:8080 - R:/127.0.0.1:59221] ACTIVE
08:44:23 [DEBUG] [nioEventLoopGroup-3-1] c.i.n.HelloWorldServer - connected [id: 0x1719abf7, L:/127.0.0.1:8080 - R:/127.0.0.1:59221]
08:44:24 [DEBUG] [nioEventLoopGroup-3-1] i.n.h.l.LoggingHandler - [id: 0x1719abf7, L:/127.0.0.1:8080 - R:/127.0.0.1:59221] READ: 20B
         +-------------------------------------------------+
         |  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f |................|
|00000010| 00 01 02 03                                     |....            |
+--------+-------------------------------------------------+----------------+
08:44:24 [DEBUG] [nioEventLoopGroup-3-1] i.n.h.l.LoggingHandler - [id: 0x1719abf7, L:/127.0.0.1:8080 - R:/127.0.0.1:59221] READ COMPLETE
08:44:24 [DEBUG] [nioEventLoopGroup-3-1] i.n.h.l.LoggingHandler - [id: 0x1719abf7, L:/127.0.0.1:8080 - R:/127.0.0.1:59221] READ: 140B
         +-------------------------------------------------+
         |  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f 00 01 02 03 |................|
|00000010| 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f 00 01 02 03 |................|
|00000020| 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f 00 01 02 03 |................|
|00000030| 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f 00 01 02 03 |................|
|00000040| 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f 00 01 02 03 |................|
|00000050| 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f 00 01 02 03 |................|
|00000060| 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f 00 01 02 03 |................|
|00000070| 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f 00 01 02 03 |................|
|00000080| 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f             |............    |
+--------+-------------------------------------------------+----------------+
08:44:24 [DEBUG] [nioEventLoopGroup-3-1] i.n.h.l.LoggingHandler - [id: 0x1719abf7, L:/127.0.0.1:8080 - R:/127.0.0.1:59221] READ COMPLETE

serverBootstrap.option(ChannelOption.SO_RCVBUF, 10) 影响的底层接收缓冲区(即滑动窗口)大小,仅决定了 netty 读取的最小单位,netty 实际每次读取的一般是它的整数倍

2.1.3 现象分析

粘包

  • 现象,发送 abc def,接收 abcdef
  • 原因
    • 应用层:接收方 ByteBuf 设置太大(Netty 默认 1024)
    • 滑动窗口:假设发送方 256 bytes 表示一个完整报文,但由于接收方处理不及时且窗口大小足够大,这 256 bytes 字节就会缓冲在接收方的滑动窗口中,当滑动窗口中缓冲了多个报文就会粘包
    • Nagle 算法:会造成粘包

半包

  • 现象,发送 abcdef,接收 abc def
  • 原因
    • 应用层:接收方 ByteBuf 小于实际发送数据量
    • 滑动窗口:假设接收方的窗口只剩了 128 bytes,发送方的报文大小是 256 bytes,这时放不下了,只能先发送前 128 bytes,等待 ack 后才能发送剩余部分,这就造成了半包
    • MSS 限制:当发送的数据超过 MSS 限制后,会将数据切分发送,就会造成半包

本质是因为 TCP 是流式协议,消息无边界。

滑动窗口 TCP 以一个段(segment)为单位,每发送一个段就需要进行一次确认应答(ack)处理,但如果这么做,缺点是包的往返时间越长性能就越差.

为了解决此问题,引入了窗口概念,窗口大小即决定了无需等待应答而可以继续发送的数据最大值.

窗口实际就起到一个缓冲区的作用,同时也能起到流量控制的作用.

  • 图中深色的部分即要发送的数据,高亮的部分即窗口
  • 窗口内的数据才允许被发送,当应答未到达前,窗口必须停止滑动
  • 如果 1001~2000 这个段的数据 ack 回来了,窗口就可以向前滑动
  • 接收方也会维护一个窗口,只有落在窗口内的数据才能允许接收

MSS 限制

  • 链路层对一次能够发送的最大数据有限制,这个限制称之为 MTU(maximum transmission unit),不同的链路设备的 MTU 值也有所不同,
    • 以太网的 MTU 是 1500
    • FDDI(光纤分布式数据接口)的 MTU 是 4352
    • 本地回环地址的 MTU 是 65535 - 本地测试不走网卡
  • MSS 是最大段长度(maximum segment size),它是 MTU 刨去 tcp 头和 ip 头后剩余能够作为数据传输的字节数
    • ipv4 tcp 头占用 20 bytes,ip 头占用 20 bytes,因此以太网 MSS 的值为 1500 - 40 = 1460
    • TCP 在传递大量数据时,会按照 MSS 大小将数据进行分割发送
    • MSS 的值在三次握手时通知对方自己 MSS 的值,然后在两者之间选择一个小值作为 MSS

Nagle 算法

  • 即使发送一个字节,也需要加入 tcp 头和 ip 头,也就是总字节数会使用 41 bytes,非常不经济。因此为了提高网络利用率,tcp 希望尽可能发送足够大的数据,这就是 Nagle 算法产生的缘由
  • 该算法是指发送端即使还有应该发送的数据,但如果这部分数据很少的话,则进行延迟发送
    • 如果 SO_SNDBUF 的数据达到 MSS,则需要发送
    • 如果 SO_SNDBUF 中含有 FIN(表示需要连接关闭)这时将剩余数据发送,再关闭
    • 如果 TCP_NODELAY = true,则需要发送
    • 已发送的数据都收到 ack 时,则需要发送
    • 上述条件不满足,但发生超时(一般为 200ms)则需要发送
    • 除上述情况,延迟发送

2.1.4 解决方案

  1. 短链接,发一个包建立一次连接,这样连接建立到连接断开之间就是消息的边界,缺点效率太低
  2. 每一条消息采用固定长度,缺点浪费空间
  3. 每一条消息采用分隔符,例如 \n,缺点需要转义
  4. 每一条消息分为 head 和 body,head 中包含 body 的长度

方法1:短链接

以解决粘包为例

public class HelloWorldClient {
    static final Logger log = LoggerFactory.getLogger(HelloWorldClient.class);

    public static void main(String[] args) {
        // 分 10 次发送
        for (int i = 0; i < 10; i++) {
            send();
        }
    }

    private static void send() {
        NioEventLoopGroup worker = new NioEventLoopGroup();
        try {
            Bootstrap bootstrap = new Bootstrap();
            bootstrap.channel(NioSocketChannel.class);
            bootstrap.group(worker);
            bootstrap.handler(new ChannelInitializer<SocketChannel>() {
                @Override
                protected void initChannel(SocketChannel ch) throws Exception {
                    log.debug("conneted...");
                    ch.pipeline().addLast(new LoggingHandler(LogLevel.DEBUG));
                    ch.pipeline().addLast(new ChannelInboundHandlerAdapter() {
                        @Override
                        public void channelActive(ChannelHandlerContext ctx) throws Exception {
                            log.debug("sending...");
                            ByteBuf buffer = ctx.alloc().buffer();
                            buffer.writeBytes(new byte[]{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15});
                            ctx.writeAndFlush(buffer);
                            // 发完即关
                            ctx.close();
                        }
                    });
                }
            });
            ChannelFuture channelFuture = bootstrap.connect("localhost", 8080).sync();
            channelFuture.channel().closeFuture().sync();

        } catch (InterruptedException e) {
            log.error("client error", e);
        } finally {
            worker.shutdownGracefully();
        }
    }
}

半包用这种办法还是不好解决,因为接收方的缓冲区大小是有限的

方法2:固定长度

让所有数据包长度固定(假设长度为 8 字节),服务器端加入

ch.pipeline().addLast(new FixedLengthFrameDecoder(8));

客户端测试代码,注意, 采用这种方法后,客户端什么时候 flush 都可以

public class HelloWorldClient {
    static final Logger log = LoggerFactory.getLogger(HelloWorldClient.class);

    public static void main(String[] args) {
        NioEventLoopGroup worker = new NioEventLoopGroup();
        try {
            Bootstrap bootstrap = new Bootstrap();
            bootstrap.channel(NioSocketChannel.class);
            bootstrap.group(worker);
            bootstrap.handler(new ChannelInitializer<SocketChannel>() {
                @Override
                protected void initChannel(SocketChannel ch) throws Exception {
                    log.debug("connetted...");
                    ch.pipeline().addLast(new LoggingHandler(LogLevel.DEBUG));
                    ch.pipeline().addLast(new ChannelInboundHandlerAdapter() {
                        @Override
                        public void channelActive(ChannelHandlerContext ctx) throws Exception {
                            log.debug("sending...");
                            // 发送内容随机的数据包
                            Random r = new Random();
                            char c = 'a';
                            ByteBuf buffer = ctx.alloc().buffer();
                            for (int i = 0; i < 10; i++) {
                                byte[] bytes = new byte[8];
                                for (int j = 0; j < r.nextInt(8); j++) {
                                    bytes[j] = (byte) c;
                                }
                                c++;
                                buffer.writeBytes(bytes);
                            }
                            ctx.writeAndFlush(buffer);
                        }
                    });
                }
            });
            ChannelFuture channelFuture = bootstrap.connect("192.168.0.103", 9090).sync();
            channelFuture.channel().closeFuture().sync();

        } catch (InterruptedException e) {
            log.error("client error", e);
        } finally {
            worker.shutdownGracefully();
        }
    }
}

服务端输出

12:06:51 [DEBUG] [main] c.i.n.HelloWorldServer - [id: 0xe3d9713f] binding...
12:06:51 [DEBUG] [main] c.i.n.HelloWorldServer - [id: 0xe3d9713f, L:/192.168.0.103:9090] bound...
12:07:00 [DEBUG] [nioEventLoopGroup-3-1] i.n.h.l.LoggingHandler - [id: 0xd739f137, L:/192.168.0.103:9090 - R:/192.168.0.103:53155] REGISTERED
12:07:00 [DEBUG] [nioEventLoopGroup-3-1] i.n.h.l.LoggingHandler - [id: 0xd739f137, L:/192.168.0.103:9090 - R:/192.168.0.103:53155] ACTIVE
12:07:00 [DEBUG] [nioEventLoopGroup-3-1] c.i.n.HelloWorldServer - connected [id: 0xd739f137, L:/192.168.0.103:9090 - R:/192.168.0.103:53155]
12:07:00 [DEBUG] [nioEventLoopGroup-3-1] i.n.h.l.LoggingHandler - [id: 0xd739f137, L:/192.168.0.103:9090 - R:/192.168.0.103:53155] READ: 8B
         +-------------------------------------------------+
         |  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 61 61 61 61 00 00 00 00                         |aaaa....        |
+--------+-------------------------------------------------+----------------+
12:07:00 [DEBUG] [nioEventLoopGroup-3-1] i.n.h.l.LoggingHandler - [id: 0xd739f137, L:/192.168.0.103:9090 - R:/192.168.0.103:53155] READ: 8B
         +-------------------------------------------------+
         |  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 62 00 00 00 00 00 00 00                         |b.......        |
+--------+-------------------------------------------------+----------------+
12:07:00 [DEBUG] [nioEventLoopGroup-3-1] i.n.h.l.LoggingHandler - [id: 0xd739f137, L:/192.168.0.103:9090 - R:/192.168.0.103:53155] READ: 8B
         +-------------------------------------------------+
         |  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 63 63 00 00 00 00 00 00                         |cc......        |
+--------+-------------------------------------------------+----------------+
12:07:00 [DEBUG] [nioEventLoopGroup-3-1] i.n.h.l.LoggingHandler - [id: 0xd739f137, L:/192.168.0.103:9090 - R:/192.168.0.103:53155] READ: 8B
         +-------------------------------------------------+
         |  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 64 00 00 00 00 00 00 00                         |d.......        |
+--------+-------------------------------------------------+----------------+
12:07:00 [DEBUG] [nioEventLoopGroup-3-1] i.n.h.l.LoggingHandler - [id: 0xd739f137, L:/192.168.0.103:9090 - R:/192.168.0.103:53155] READ: 8B
         +-------------------------------------------------+
         |  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 00 00 00 00 00 00 00 00                         |........        |
+--------+-------------------------------------------------+----------------+
12:07:00 [DEBUG] [nioEventLoopGroup-3-1] i.n.h.l.LoggingHandler - [id: 0xd739f137, L:/192.168.0.103:9090 - R:/192.168.0.103:53155] READ: 8B
         +-------------------------------------------------+
         |  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 66 66 66 66 00 00 00 00                         |ffff....        |
+--------+-------------------------------------------------+----------------+
12:07:00 [DEBUG] [nioEventLoopGroup-3-1] i.n.h.l.LoggingHandler - [id: 0xd739f137, L:/192.168.0.103:9090 - R:/192.168.0.103:53155] READ: 8B
         +-------------------------------------------------+
         |  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 67 67 67 00 00 00 00 00                         |ggg.....        |
+--------+-------------------------------------------------+----------------+
12:07:00 [DEBUG] [nioEventLoopGroup-3-1] i.n.h.l.LoggingHandler - [id: 0xd739f137, L:/192.168.0.103:9090 - R:/192.168.0.103:53155] READ: 8B
         +-------------------------------------------------+
         |  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 68 00 00 00 00 00 00 00                         |h.......        |
+--------+-------------------------------------------------+----------------+
12:07:00 [DEBUG] [nioEventLoopGroup-3-1] i.n.h.l.LoggingHandler - [id: 0xd739f137, L:/192.168.0.103:9090 - R:/192.168.0.103:53155] READ: 8B
         +-------------------------------------------------+
         |  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 69 69 69 69 69 00 00 00                         |iiiii...        |
+--------+-------------------------------------------------+----------------+
12:07:00 [DEBUG] [nioEventLoopGroup-3-1] i.n.h.l.LoggingHandler - [id: 0xd739f137, L:/192.168.0.103:9090 - R:/192.168.0.103:53155] READ: 8B
         +-------------------------------------------------+
         |  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 6a 6a 6a 6a 00 00 00 00                         |jjjj....        |
+--------+-------------------------------------------------+----------------+
12:07:00 [DEBUG] [nioEventLoopGroup-3-1] i.n.h.l.LoggingHandler - [id: 0xd739f137, L:/192.168.0.103:9090 - R:/192.168.0.103:53155] READ COMPLETE

缺点是,数据包的大小不好把握

  • 长度定的太大,浪费
  • 长度定的太小,对某些数据包又显得不够
  • 难以处理,容易造成字符获取字节不完整

方法3:固定分隔符

服务端加入,默认以 \n 或 \r\n 作为分隔符,如果超出指定长度仍未出现分隔符,则抛出异常

ch.pipeline().addLast(new LineBasedFrameDecoder(1024));

客户端在每条消息之后,加入 \n 分隔符

public class HelloWorldClient {
    static final Logger log = LoggerFactory.getLogger(HelloWorldClient.class);

    public static void main(String[] args) {
        NioEventLoopGroup worker = new NioEventLoopGroup();
        try {
            Bootstrap bootstrap = new Bootstrap();
            bootstrap.channel(NioSocketChannel.class);
            bootstrap.group(worker);
            bootstrap.handler(new ChannelInitializer<SocketChannel>() {
                @Override
                protected void initChannel(SocketChannel ch) throws Exception {
                    log.debug("connetted...");
                    ch.pipeline().addLast(new LoggingHandler(LogLevel.DEBUG));
                    ch.pipeline().addLast(new ChannelInboundHandlerAdapter() {
                        @Override
                        public void channelActive(ChannelHandlerContext ctx) throws Exception {
                            log.debug("sending...");
                            Random r = new Random();
                            char c = 'a';
                            ByteBuf buffer = ctx.alloc().buffer();
                            for (int i = 0; i < 10; i++) {
                                for (int j = 1; j <= r.nextInt(16)+1; j++) {
                                    buffer.writeByte((byte) c);
                                }
                                buffer.writeByte(10);
                                c++;
                            }
                            ctx.writeAndFlush(buffer);
                        }
                    });
                }
            });
            ChannelFuture channelFuture = bootstrap.connect("192.168.0.103", 9090).sync();
            channelFuture.channel().closeFuture().sync();

        } catch (InterruptedException e) {
            log.error("client error", e);
        } finally {
            worker.shutdownGracefully();
        }
    }
}

服务端输出

14:08:18 [DEBUG] [nioEventLoopGroup-3-5] c.i.n.HelloWorldServer - connected [id: 0xa4b3be43, L:/192.168.0.103:9090 - R:/192.168.0.103:63641]
14:08:18 [DEBUG] [nioEventLoopGroup-3-5] i.n.h.l.LoggingHandler - [id: 0xa4b3be43, L:/192.168.0.103:9090 - R:/192.168.0.103:63641] READ: 1B
         +-------------------------------------------------+
         |  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 61                                              |a               |
+--------+-------------------------------------------------+----------------+
14:08:18 [DEBUG] [nioEventLoopGroup-3-5] i.n.h.l.LoggingHandler - [id: 0xa4b3be43, L:/192.168.0.103:9090 - R:/192.168.0.103:63641] READ: 3B
         +-------------------------------------------------+
         |  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 62 62 62                                        |bbb             |
+--------+-------------------------------------------------+----------------+
14:08:18 [DEBUG] [nioEventLoopGroup-3-5] i.n.h.l.LoggingHandler - [id: 0xa4b3be43, L:/192.168.0.103:9090 - R:/192.168.0.103:63641] READ: 3B
         +-------------------------------------------------+
         |  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 63 63 63                                        |ccc             |
+--------+-------------------------------------------------+----------------+
14:08:18 [DEBUG] [nioEventLoopGroup-3-5] i.n.h.l.LoggingHandler - [id: 0xa4b3be43, L:/192.168.0.103:9090 - R:/192.168.0.103:63641] READ: 2B
         +-------------------------------------------------+
         |  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 64 64                                           |dd              |
+--------+-------------------------------------------------+----------------+
14:08:18 [DEBUG] [nioEventLoopGroup-3-5] i.n.h.l.LoggingHandler - [id: 0xa4b3be43, L:/192.168.0.103:9090 - R:/192.168.0.103:63641] READ: 10B
         +-------------------------------------------------+
         |  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 65 65 65 65 65 65 65 65 65 65                   |eeeeeeeeee      |
+--------+-------------------------------------------------+----------------+
14:08:18 [DEBUG] [nioEventLoopGroup-3-5] i.n.h.l.LoggingHandler - [id: 0xa4b3be43, L:/192.168.0.103:9090 - R:/192.168.0.103:63641] READ: 2B
         +-------------------------------------------------+
         |  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 66 66                                           |ff              |
+--------+-------------------------------------------------+----------------+
14:08:18 [DEBUG] [nioEventLoopGroup-3-5] i.n.h.l.LoggingHandler - [id: 0xa4b3be43, L:/192.168.0.103:9090 - R:/192.168.0.103:63641] READ: 7B
         +-------------------------------------------------+
         |  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 67 67 67 67 67 67 67                            |ggggggg         |
+--------+-------------------------------------------------+----------------+
14:08:18 [DEBUG] [nioEventLoopGroup-3-5] i.n.h.l.LoggingHandler - [id: 0xa4b3be43, L:/192.168.0.103:9090 - R:/192.168.0.103:63641] READ: 4B
         +-------------------------------------------------+
         |  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 68 68 68 68                                     |hhhh            |
+--------+-------------------------------------------------+----------------+
14:08:18 [DEBUG] [nioEventLoopGroup-3-5] i.n.h.l.LoggingHandler - [id: 0xa4b3be43, L:/192.168.0.103:9090 - R:/192.168.0.103:63641] READ: 7B
         +-------------------------------------------------+
         |  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 69 69 69 69 69 69 69                            |iiiiiii         |
+--------+-------------------------------------------------+----------------+
14:08:18 [DEBUG] [nioEventLoopGroup-3-5] i.n.h.l.LoggingHandler - [id: 0xa4b3be43, L:/192.168.0.103:9090 - R:/192.168.0.103:63641] READ: 11B
         +-------------------------------------------------+
         |  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 6a 6a 6a 6a 6a 6a 6a 6a 6a 6a 6a                |jjjjjjjjjjj     |
+--------+-------------------------------------------------+----------------+
14:08:18 [DEBUG] [nioEventLoopGroup-3-5] i.n.h.l.LoggingHandler - [id: 0xa4b3be43, L:/192.168.0.103:9090 - R:/192.168.0.103:63641] READ COMPLETE

缺点,处理字符数据比较合适,但如果内容本身包含了分隔符(字节数据常常会有此情况),那么就会解析错误

方法4:预设长度

在发送消息前,先约定用定长字节表示接下来数据的长度

// 最大长度,长度偏移,长度占用字节,长度调整,剥离字节数
ch.pipeline().addLast(new LengthFieldBasedFrameDecoder(1024, 0, 1, 0, 1));

客户端代码

public class HelloWorldClient {
    static final Logger log = LoggerFactory.getLogger(HelloWorldClient.class);

    public static void main(String[] args) {
        NioEventLoopGroup worker = new NioEventLoopGroup();
        try {
            Bootstrap bootstrap = new Bootstrap();
            bootstrap.channel(NioSocketChannel.class);
            bootstrap.group(worker);
            bootstrap.handler(new ChannelInitializer<SocketChannel>() {
                @Override
                protected void initChannel(SocketChannel ch) throws Exception {
                    log.debug("connetted...");
                    ch.pipeline().addLast(new LoggingHandler(LogLevel.DEBUG));
                    ch.pipeline().addLast(new ChannelInboundHandlerAdapter() {
                        @Override
                        public void channelActive(ChannelHandlerContext ctx) throws Exception {
                            log.debug("sending...");
                            Random r = new Random();
                            char c = 'a';
                            ByteBuf buffer = ctx.alloc().buffer();
                            for (int i = 0; i < 10; i++) {
                                byte length = (byte) (r.nextInt(16) + 1);
                                // 先写入长度
                                buffer.writeByte(length);
                                // 再
                                for (int j = 1; j <= length; j++) {
                                    buffer.writeByte((byte) c);
                                }
                                c++;
                            }
                            ctx.writeAndFlush(buffer);
                        }
                    });
                }
            });
            ChannelFuture channelFuture = bootstrap.connect("192.168.0.103", 9090).sync();
            channelFuture.channel().closeFuture().sync();

        } catch (InterruptedException e) {
            log.error("client error", e);
        } finally {
            worker.shutdownGracefully();
        }
    }
}

服务端输出

14:36:50 [DEBUG] [main] c.i.n.HelloWorldServer - [id: 0xdff439d3] binding...
14:36:51 [DEBUG] [main] c.i.n.HelloWorldServer - [id: 0xdff439d3, L:/192.168.0.103:9090] bound...
14:37:10 [DEBUG] [nioEventLoopGroup-3-1] i.n.h.l.LoggingHandler - [id: 0x744f2b47, L:/192.168.0.103:9090 - R:/192.168.0.103:49979] REGISTERED
14:37:10 [DEBUG] [nioEventLoopGroup-3-1] i.n.h.l.LoggingHandler - [id: 0x744f2b47, L:/192.168.0.103:9090 - R:/192.168.0.103:49979] ACTIVE
14:37:10 [DEBUG] [nioEventLoopGroup-3-1] c.i.n.HelloWorldServer - connected [id: 0x744f2b47, L:/192.168.0.103:9090 - R:/192.168.0.103:49979]
14:37:10 [DEBUG] [nioEventLoopGroup-3-1] i.n.h.l.LoggingHandler - [id: 0x744f2b47, L:/192.168.0.103:9090 - R:/192.168.0.103:49979] READ: 9B
         +-------------------------------------------------+
         |  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 61 61 61 61 61 61 61 61 61                      |aaaaaaaaa       |
+--------+-------------------------------------------------+----------------+
14:37:10 [DEBUG] [nioEventLoopGroup-3-1] i.n.h.l.LoggingHandler - [id: 0x744f2b47, L:/192.168.0.103:9090 - R:/192.168.0.103:49979] READ: 9B
         +-------------------------------------------------+
         |  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 62 62 62 62 62 62 62 62 62                      |bbbbbbbbb       |
+--------+-------------------------------------------------+----------------+
14:37:10 [DEBUG] [nioEventLoopGroup-3-1] i.n.h.l.LoggingHandler - [id: 0x744f2b47, L:/192.168.0.103:9090 - R:/192.168.0.103:49979] READ: 6B
         +-------------------------------------------------+
         |  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 63 63 63 63 63 63                               |cccccc          |
+--------+-------------------------------------------------+----------------+
14:37:10 [DEBUG] [nioEventLoopGroup-3-1] i.n.h.l.LoggingHandler - [id: 0x744f2b47, L:/192.168.0.103:9090 - R:/192.168.0.103:49979] READ: 8B
         +-------------------------------------------------+
         |  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 64 64 64 64 64 64 64 64                         |dddddddd        |
+--------+-------------------------------------------------+----------------+
14:37:10 [DEBUG] [nioEventLoopGroup-3-1] i.n.h.l.LoggingHandler - [id: 0x744f2b47, L:/192.168.0.103:9090 - R:/192.168.0.103:49979] READ: 15B
         +-------------------------------------------------+
         |  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65    |eeeeeeeeeeeeeee |
+--------+-------------------------------------------------+----------------+
14:37:10 [DEBUG] [nioEventLoopGroup-3-1] i.n.h.l.LoggingHandler - [id: 0x744f2b47, L:/192.168.0.103:9090 - R:/192.168.0.103:49979] READ: 13B
         +-------------------------------------------------+
         |  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 66 66 66 66 66 66 66 66 66 66 66 66 66          |fffffffffffff   |
+--------+-------------------------------------------------+----------------+
14:37:10 [DEBUG] [nioEventLoopGroup-3-1] i.n.h.l.LoggingHandler - [id: 0x744f2b47, L:/192.168.0.103:9090 - R:/192.168.0.103:49979] READ: 2B
         +-------------------------------------------------+
         |  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 67 67                                           |gg              |
+--------+-------------------------------------------------+----------------+
14:37:10 [DEBUG] [nioEventLoopGroup-3-1] i.n.h.l.LoggingHandler - [id: 0x744f2b47, L:/192.168.0.103:9090 - R:/192.168.0.103:49979] READ: 2B
         +-------------------------------------------------+
         |  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 68 68                                           |hh              |
+--------+-------------------------------------------------+----------------+
14:37:10 [DEBUG] [nioEventLoopGroup-3-1] i.n.h.l.LoggingHandler - [id: 0x744f2b47, L:/192.168.0.103:9090 - R:/192.168.0.103:49979] READ: 14B
         +-------------------------------------------------+
         |  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 69 69 69 69 69 69 69 69 69 69 69 69 69 69       |iiiiiiiiiiiiii  |
+--------+-------------------------------------------------+----------------+
14:37:10 [DEBUG] [nioEventLoopGroup-3-1] i.n.h.l.LoggingHandler - [id: 0x744f2b47, L:/192.168.0.103:9090 - R:/192.168.0.103:49979] READ: 9B
         +-------------------------------------------------+
         |  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 6a 6a 6a 6a 6a 6a 6a 6a 6a                      |jjjjjjjjj       |
+--------+-------------------------------------------------+----------------+
14:37:10 [DEBUG] [nioEventLoopGroup-3-1] i.n.h.l.LoggingHandler - [id: 0x744f2b47, L:/192.168.0.103:9090 - R:/192.168.0.103:49979] READ COMPLETE

2.2 协议设计与解析

2.2.1 为什么需要协议?

TCP/IP 中消息传输基于流的方式,没有边界

协议的目的就是划定消息的边界,制定通信双方要共同遵守的通信规则

例如:在网络上传输

下雨天留客天留我不留

是中文一句著名的无标点符号句子,在没有标点符号情况下,这句话有数种拆解方式,而意思却是完全不同,所以常被用作讲述标点符号的重要性

一种解读

下雨天留客,天留,我不留

另一种解读

下雨天,留客天,留我不?留

如何设计协议呢?其实就是给网络传输的信息加上“标点符号”。但通过分隔符来断句不是很好,因为分隔符本身如果用于传输,那么必须加以区分。因此,下面一种协议较为常用

定长字节表示内容长度 + 实际内容

例如,假设一个中文字符长度为 3,按照上述协议的规则,发送信息方式如下,就不会被接收方弄错意思了

0f下雨天留客06天留09我不留

2.2.2 redis 协议举例

public static void main(String[] args) {
    int commandLength = 3;
    String commandName = "set";
    String[] commandParams = new String[]{"name", "zhangsan1"};
    sendCommand(commandLength, commandName, commandParams);

    int getCommandLength = 2;
    String getCommandName = "get";
    String[] getCommandParams = new String[]{"name"};
    sendCommand(getCommandLength, getCommandName, getCommandParams);
}

private static void sendCommand(int commandLength, String commandName, String[] commandParams) {
    final byte[] LINE = {13, 10};
    NioEventLoopGroup worker = new NioEventLoopGroup();
    try {
        Bootstrap bootstrap = new Bootstrap();
        bootstrap.channel(NioSocketChannel.class);
        bootstrap.group(worker);
        bootstrap.handler(new ChannelInitializer<SocketChannel>() {
            @Override
            protected void initChannel(SocketChannel ch) {
                ch.pipeline().addLast(new LoggingHandler());
                ch.pipeline().addLast(new ChannelInboundHandlerAdapter() {
                    @Override
                    public void channelActive(ChannelHandlerContext ctx) {
                        ByteBuf buf = ctx.alloc().buffer();
                        buf.writeBytes(("*" + commandLength).getBytes());
                        buf.writeBytes(LINE);
                        buf.writeBytes(("$" + (commandName.length())).getBytes());
                        buf.writeBytes(LINE);
                        buf.writeBytes(commandName.getBytes());
                        buf.writeBytes(LINE);
                        for (String param : commandParams) {
                            buf.writeBytes(("$" + (param.length())).getBytes());
                            buf.writeBytes(LINE);
                            buf.writeBytes(param.getBytes());
                            buf.writeBytes(LINE);
                        }
                        ctx.writeAndFlush(buf);
                    }

                    @Override
                    public void channelRead(ChannelHandlerContext ctx, Object msg) throws Exception {
                        ByteBuf buf = (ByteBuf) msg;
                        System.out.println(buf.toString(Charset.defaultCharset()));
                    }
                });
            }
        });
        ChannelFuture channelFuture = bootstrap.connect("localhost", 6379).sync();
        channelFuture.channel().closeFuture().sync();
    } catch (InterruptedException e) {
        log.error("client error", e);
    } finally {
        worker.shutdown();
    }
}

2.2.3 http 协议举例

NioEventLoopGroup boss = new NioEventLoopGroup();
NioEventLoopGroup worker = new NioEventLoopGroup();
try {
    ServerBootstrap serverBootstrap = new ServerBootstrap();
    serverBootstrap.channel(NioServerSocketChannel.class);
    serverBootstrap.group(boss, worker);
    serverBootstrap.childHandler(new ChannelInitializer<SocketChannel>() {
        @Override
        protected void initChannel(SocketChannel ch) throws Exception {
            ch.pipeline().addLast(new LoggingHandler(LogLevel.DEBUG));
            ch.pipeline().addLast(new HttpServerCodec());
            ch.pipeline().addLast(new SimpleChannelInboundHandler<HttpRequest>() {
                @Override
                protected void channelRead0(ChannelHandlerContext ctx, HttpRequest msg) throws Exception {
                    // 获取请求
                    log.debug(msg.uri());

                    // 返回响应
                    DefaultFullHttpResponse response = new DefaultFullHttpResponse(msg.protocolVersion(), HttpResponseStatus.OK);
                    byte[] bytes = "<h1>Hello, world!</h1>".getBytes();
                    response.headers().setInt(CONTENT_LENGTH, bytes.length);
                    response.content().writeBytes(bytes);

                    // 写回响应
                    ctx.writeAndFlush(response);
                }
            });
        }
    });
    ChannelFuture channelFuture = serverBootstrap.bind(8080).sync();
    channelFuture.channel().closeFuture().sync();
} catch (InterruptedException e) {
    log.error("server error", e);
} finally {
    boss.shutdownGracefully();
    worker.shutdownGracefully();
}

2.2.4 自定义协议要素

  • 魔数,用来在第一时间判定是否是无效数据包
  • 版本号,可以支持协议的升级
  • 序列化算法,消息正文到底采用哪种序列化反序列化方式,可以由此扩展,例如:json、protobuf、hessian、jdk
  • 指令类型,是登录、注册、单聊、群聊... 跟业务相关
  • 请求序号,为了双工通信,提供异步能力
  • 正文长度
  • 消息正文

编解码器

根据上面的要素,设计一个登录请求消息和登录响应消息,并使用 Netty 完成收发

@Slf4j
public class MessageCodec extends ByteToMessageCodec<Message> {

    @Override
    protected void encode(ChannelHandlerContext ctx, Message msg, ByteBuf out) throws Exception {
        // 1. 4 字节的魔数
        out.writeBytes(new byte[]{1, 2, 3, 4});
        // 2. 1 字节的版本,
        out.writeByte(1);
        // 3. 1 字节的序列化方式 jdk 0 , json 1
        out.writeByte(0);
        // 4. 1 字节的指令类型
        out.writeByte(msg.getMessageType());
        // 5. 4 个字节
        out.writeInt(msg.getSequenceId());
        // 无意义,对齐填充
        out.writeByte(0xff);
        // 6. 获取内容的字节数组
        ByteArrayOutputStream bos = new ByteArrayOutputStream();
        ObjectOutputStream oos = new ObjectOutputStream(bos);
        oos.writeObject(msg);
        byte[] bytes = bos.toByteArray();
        // 7. 长度
        out.writeInt(bytes.length);
        // 8. 写入内容
        out.writeBytes(bytes);
    }

    @Override
    protected void decode(ChannelHandlerContext ctx, ByteBuf in, List<Object> out) throws Exception {
        int magicNum = in.readInt();
        byte version = in.readByte();
        byte serializerType = in.readByte();
        byte messageType = in.readByte();
        int sequenceId = in.readInt();
        in.readByte();
        int length = in.readInt();
        byte[] bytes = new byte[length];
        in.readBytes(bytes, 0, length);
        ObjectInputStream ois = new ObjectInputStream(new ByteArrayInputStream(bytes));
        Message message = (Message) ois.readObject();
        log.debug("{}, {}, {}, {}, {}, {}", magicNum, version, serializerType, messageType, sequenceId, length);
        log.debug("{}", message);
        out.add(message);
    }
}

测试

EmbeddedChannel channel = new EmbeddedChannel(
    new LoggingHandler(),
    new LengthFieldBasedFrameDecoder(
        1024, 12, 4, 0, 0),
    new MessageCodec()
);
// encode
LoginRequestMessage message = new LoginRequestMessage("zhangsan", "123", "张三");
//        channel.writeOutbound(message);
// decode
ByteBuf buf = ByteBufAllocator.DEFAULT.buffer();
new MessageCodec().encode(null, message, buf);

ByteBuf s1 = buf.slice(0, 100);
ByteBuf s2 = buf.slice(100, buf.readableBytes() - 100);
s1.retain(); // 引用计数 2
channel.writeInbound(s1); // release 1
channel.writeInbound(s2);

解读:参照java字节码

什么时候可以加 @Sharable

  • 当 handler 不保存状态时,就可以安全地在多线程下被共享
  • 但要注意对于编解码器类,不能继承 ByteToMessageCodec 或 CombinedChannelDuplexHandler 父类,他们的构造方法对 @Sharable 有限制
  • 如果能确保编解码器不会保存状态,可以继承 MessageToMessageCodec 父类
@Slf4j
@ChannelHandler.Sharable
/**
 * 必须和 LengthFieldBasedFrameDecoder 一起使用,确保接到的 ByteBuf 消息是完整的
 */
public class MessageCodecSharable extends MessageToMessageCodec<ByteBuf, Message> {
    @Override
    protected void encode(ChannelHandlerContext ctx, Message msg, List<Object> outList) throws Exception {
        ByteBuf out = ctx.alloc().buffer();
        // 1. 4 字节的魔数
        out.writeBytes(new byte[]{1, 2, 3, 4});
        // 2. 1 字节的版本,
        out.writeByte(1);
        // 3. 1 字节的序列化方式 jdk 0 , json 1
        out.writeByte(0);
        // 4. 1 字节的指令类型
        out.writeByte(msg.getMessageType());
        // 5. 4 个字节
        out.writeInt(msg.getSequenceId());
        // 无意义,对齐填充
        out.writeByte(0xff);
        // 6. 获取内容的字节数组
        ByteArrayOutputStream bos = new ByteArrayOutputStream();
        ObjectOutputStream oos = new ObjectOutputStream(bos);
        oos.writeObject(msg);
        byte[] bytes = bos.toByteArray();
        // 7. 长度
        out.writeInt(bytes.length);
        // 8. 写入内容
        out.writeBytes(bytes);
        outList.add(out);
    }

    @Override
    protected void decode(ChannelHandlerContext ctx, ByteBuf in, List<Object> out) throws Exception {
        int magicNum = in.readInt();
        byte version = in.readByte();
        byte serializerType = in.readByte();
        byte messageType = in.readByte();
        int sequenceId = in.readInt();
        in.readByte();
        int length = in.readInt();
        byte[] bytes = new byte[length];
        in.readBytes(bytes, 0, length);
        ObjectInputStream ois = new ObjectInputStream(new ByteArrayInputStream(bytes));
        Message message = (Message) ois.readObject();
        log.debug("{}, {}, {}, {}, {}, {}", magicNum, version, serializerType, messageType, sequenceId, length);
        log.debug("{}", message);
        out.add(message);
    }
}

2.3 聊天室案例

实现聊天功能,具体支持如下功能:

  • 用户登录
  • 发送消息给指定用户
  • 创建聊天群组
  • 发送消息给聊天群组

https://github.com/user0819/netty_demo.git

三、优化与源码

3.1 优化

3.1.1 序列化算法

序列化,反序列化主要用在消息正文的转换上

  • 序列化时,需要将 Java 对象变为要传输的数据(可以是 byte[],或 json 等,最终都需要变成 byte[])
  • 反序列化时,需要将传入的正文数据还原成 Java 对象,便于处理

Java 序列化

// 反序列化
byte[] body = new byte[bodyLength];
byteByf.readBytes(body);
ObjectInputStream in = new ObjectInputStream(new ByteArrayInputStream(body));
Message message = (Message) in.readObject();

// 序列化
ByteArrayOutputStream out = new ByteArrayOutputStream();
new ObjectOutputStream(out).writeObject(message);
byte[] bytes = out.toByteArray();

JSON序列化

// 反序列化
return new Gson().fromJson(new String(bytes, StandardCharsets.UTF_8), clazz);

// 序列化
return new Gson().toJson(object).getBytes(StandardCharsets.UTF_8);

3.1.2 参数调优

1)CONNECT_TIMEOUT_MILLIS

  • 属于 SocketChannal 参数
  • 用在客户端建立连接时,如果在指定毫秒内无法连接,会抛出 timeout 异常
  • SO_TIMEOUT 主要用在阻塞 IO,阻塞 IO 中 accept,read 等都是无限等待的,如果不希望永远阻塞,使用它调整超时时间
@Slf4j
public class TestConnectionTimeout {
    public static void main(String[] args) {
        NioEventLoopGroup group = new NioEventLoopGroup();
        try {
            Bootstrap bootstrap = new Bootstrap()
                    .group(group)
                    .option(ChannelOption.CONNECT_TIMEOUT_MILLIS, 300)
                    .channel(NioSocketChannel.class)
                    .handler(new LoggingHandler());
            ChannelFuture future = bootstrap.connect("127.0.0.1", 8080);
            future.sync().channel().closeFuture().sync(); // 断点1
        } catch (Exception e) {
            e.printStackTrace();
            log.debug("timeout");
        } finally {
            group.shutdownGracefully();
        }
    }
}

另外源码部分 io.netty.channel.nio.AbstractNioChannel.AbstractNioUnsafe#connect

@Override
public final void connect(
        final SocketAddress remoteAddress, final SocketAddress localAddress, final ChannelPromise promise) {
    // ...
    // Schedule connect timeout.
    int connectTimeoutMillis = config().getConnectTimeoutMillis();
    if (connectTimeoutMillis > 0) {
        connectTimeoutFuture = eventLoop().schedule(new Runnable() {
            @Override
            public void run() {                
                ChannelPromise connectPromise = AbstractNioChannel.this.connectPromise;
                ConnectTimeoutException cause =
                    new ConnectTimeoutException("connection timed out: " + remoteAddress); // 断点2
                if (connectPromise != null && connectPromise.tryFailure(cause)) {
                    close(voidPromise());
                }
            }
        }, connectTimeoutMillis, TimeUnit.MILLISECONDS);
    }
    // ...
}

2)SO_BACKLOG

  • 属于 ServerSocketChannal 参数

  1. 第一次握手,client 发送 SYN 到 server,状态修改为 SYN_SEND,server 收到,状态改变为 SYN_REVD,并将该请求放入 sync queue 队列
  2. 第二次握手,server 回复 SYN + ACK 给 client,client 收到,状态改变为 ESTABLISHED,并发送 ACK 给 server
  3. 第三次握手,server 收到 ACK,状态改变为 ESTABLISHED,将该请求从 sync queue 放入 accept queue

其中

  • 在 linux 2.2 之前,backlog 大小包括了两个队列的大小,在 2.2 之后,分别用下面两个参数来控制
  • sync queue - 半连接队列
    • 大小通过 /proc/sys/net/ipv4/tcp_max_syn_backlog 指定,在 syncookies 启用的情况下,逻辑上没有最大值限制,这个设置便被忽略
  • accept queue - 全连接队列
    • 其大小通过 /proc/sys/net/core/somaxconn 指定,在使用 listen 函数时,内核会根据传入的 backlog 参数与系统参数,取二者的较小值
    • 如果 accpet queue 队列满了,server 将发送一个拒绝连接的错误信息到 client

netty 中可以通过 option(ChannelOption.SO_BACKLOG, 值) 来设置大小

可以通过下面源码查看默认大小

public class DefaultServerSocketChannelConfig extends DefaultChannelConfigimplements ServerSocketChannelConfig {
    private volatile int backlog = NetUtil.SOMAXCONN;
    // ...
}

课堂调试关键断点为:io.netty.channel.nio.NioEventLoop#processSelectedKey

oio 中更容易说明,不用 debug 模式

public class Server {
    public static void main(String[] args) throws IOException {
        ServerSocket ss = new ServerSocket(8888, 2);
        Socket accept = ss.accept();
        System.out.println(accept);
        System.in.read();
    }
}

客户端启动 4 个

public class Client {
    public static void main(String[] args) throws IOException {
        try {
            Socket s = new Socket();
            System.out.println(new Date()+" connecting...");
            s.connect(new InetSocketAddress("localhost", 8888),1000);
            System.out.println(new Date()+" connected...");
            s.getOutputStream().write(1);
            System.in.read();
        } catch (IOException e) {
            System.out.println(new Date()+" connecting timeout...");
            e.printStackTrace();
        }
    }
}

第 1,2,3 个客户端都打印,但除了第一个处于 accpet 外,其它两个都处于 accept queue 中

Tue Apr 21 20:30:28 CST 2020 connecting...
Tue Apr 21 20:30:28 CST 2020 connected...

第 4 个客户端连接时

Tue Apr 21 20:53:58 CST 2020 connecting...
Tue Apr 21 20:53:59 CST 2020 connecting timeout...
java.net.SocketTimeoutException: connect timed out

3)ulimit -n

  • 属于操作系统参数

4)TCP_NODELAY

  • 属于 SocketChannal 参数

5)SO_SNDBUF & SO_RCVBUF

  • SO_SNDBUF 属于 SocketChannal 参数
  • SO_RCVBUF 既可用于 SocketChannal 参数,也可以用于 ServerSocketChannal 参数(建议设置到 ServerSocketChannal 上)

6)ALLOCATOR

  • 属于 SocketChannal 参数
  • 用来分配 ByteBuf, ctx.alloc()

7)RCVBUF_ALLOCATOR

  • 属于 SocketChannal 参数
  • 控制 netty 接收缓冲区大小
  • 负责入站数据的分配,决定入站缓冲区的大小(并可动态调整),统一采用 direct 直接内存,具体池化还是非池化由 allocator 决定

3.1.3 RPC 框架示例

https://github.com/user0819/netty_rpc_demo.git

3.2 源码分析

3.2.1 启动剖析

下面代码演示了nio启动流程,看看 netty 中对是怎样进行处理的

//selector
Selector selector = Selector.open(); 

//创建 NioServerSocketChannel,同时会初始化它关联的 handler,以及为原生 ssc 存储 config
NioServerSocketChannel attachment = new NioServerSocketChannel();

//创建 NioServerSocketChannel 时,创建了 java 原生的 ServerSocketChannel
ServerSocketChannel serverSocketChannel = ServerSocketChannel.open(); 
serverSocketChannel.configureBlocking(false);

//注册(仅关联 selector 和 NioServerSocketChannel),未关注事件
SelectionKey selectionKey = serverSocketChannel.register(selector, 0, attachment);

//绑定端口
serverSocketChannel.bind(new InetSocketAddress(8080));

//触发 channel active 事件,在 head 中关注 op_accept 事件
selectionKey.interestOps(SelectionKey.OP_ACCEPT);

入口 :io.netty.bootstrap.ServerBootstrap#bind

关键代码 io.netty.bootstrap.AbstractBootstrap#doBind

private ChannelFuture doBind(final SocketAddress localAddress) {
    // 1. 执行初始化和注册 regFuture 会由 initAndRegister 设置其是否完成,从而回调 3.2 处代码
    final ChannelFuture regFuture = initAndRegister();
    final Channel channel = regFuture.channel();
    if (regFuture.cause() != null) {
        return regFuture;
    }

    // 2. 因为是 initAndRegister 异步执行,需要分两种情况来看,调试时也需要通过 suspend 断点类型加以区分
    // 2.1 如果已经完成
    if (regFuture.isDone()) {
        ChannelPromise promise = channel.newPromise();
        // 3.1 立刻调用 doBind0
        doBind0(regFuture, channel, localAddress, promise);
        return promise;
    } 
    // 2.2 还没有完成
    else {
        final PendingRegistrationPromise promise = new PendingRegistrationPromise(channel);
        // 3.2 回调 doBind0
        regFuture.addListener(new ChannelFutureListener() {
            @Override
            public void operationComplete(ChannelFuture future) throws Exception {
                Throwable cause = future.cause();
                if (cause != null) {
                    // 处理异常...
                    promise.setFailure(cause);
                } else {
                    promise.registered();
                    // 3. 由注册线程去执行 doBind0
                    doBind0(regFuture, channel, localAddress, promise);
                }
            }
        });
        return promise;
    }
}

关键代码 io.netty.bootstrap.AbstractBootstrap#initAndRegister

final ChannelFuture initAndRegister() {
    Channel channel = null;
    try {
        channel = channelFactory.newChannel();
        // 1.1 初始化 - 做的事就是添加一个初始化器 ChannelInitializer
        init(channel);
    } catch (Throwable t) {
        // 处理异常...
        return new DefaultChannelPromise(new FailedChannel(), GlobalEventExecutor.INSTANCE).setFailure(t);
    }

    // 1.2 注册 - 做的事就是将原生 channel 注册到 selector 上
    ChannelFuture regFuture = config().group().register(channel);
    if (regFuture.cause() != null) {
        // 处理异常...
    }
    return regFuture;
}

关键代码 io.netty.bootstrap.ServerBootstrap#init

// 这里 channel 实际上是 NioServerSocketChannel
void init(Channel channel) throws Exception {
    final Map<ChannelOption<?>, Object> options = options0();
    synchronized (options) {
        setChannelOptions(channel, options, logger);
    }

    final Map<AttributeKey<?>, Object> attrs = attrs0();
    synchronized (attrs) {
        for (Entry<AttributeKey<?>, Object> e: attrs.entrySet()) {
            @SuppressWarnings("unchecked")
            AttributeKey<Object> key = (AttributeKey<Object>) e.getKey();
            channel.attr(key).set(e.getValue());
        }
    }

    ChannelPipeline p = channel.pipeline();

    final EventLoopGroup currentChildGroup = childGroup;
    final ChannelHandler currentChildHandler = childHandler;
    final Entry<ChannelOption<?>, Object>[] currentChildOptions;
    final Entry<AttributeKey<?>, Object>[] currentChildAttrs;
    synchronized (childOptions) {
        currentChildOptions = childOptions.entrySet().toArray(newOptionArray(0));
    }
    synchronized (childAttrs) {
        currentChildAttrs = childAttrs.entrySet().toArray(newAttrArray(0));
    }

    // 为 NioServerSocketChannel 添加初始化器
    p.addLast(new ChannelInitializer<Channel>() {
        @Override
        public void initChannel(final Channel ch) throws Exception {
            final ChannelPipeline pipeline = ch.pipeline();
            ChannelHandler handler = config.handler();
            if (handler != null) {
                pipeline.addLast(handler);
            }

            // 初始化器的职责是将 ServerBootstrapAcceptor 加入至 NioServerSocketChannel
            ch.eventLoop().execute(new Runnable() {
                @Override
                public void run() {
                    pipeline.addLast(new ServerBootstrapAcceptor(
                            ch, currentChildGroup, currentChildHandler, currentChildOptions, currentChildAttrs));
                }
            });
        }
    });
}

关键代码 io.netty.channel.AbstractChannel.AbstractUnsafe#register

public final void register(EventLoop eventLoop, final ChannelPromise promise) {
    // 一些检查,略...

    AbstractChannel.this.eventLoop = eventLoop;

    if (eventLoop.inEventLoop()) {
        register0(promise);
    } else {
        try {
            // 首次执行 execute 方法时,会启动 nio 线程,之后注册等操作在 nio 线程上执行
            // 因为只有一个 NioServerSocketChannel 因此,也只会有一个 boss nio 线程
            // 这行代码完成的事实是 main -> nio boss 线程的切换
            eventLoop.execute(new Runnable() {
                @Override
                public void run() {
                    register0(promise);
                }
            });
        } catch (Throwable t) {
            // 日志记录...
            closeForcibly();
            closeFuture.setClosed();
            safeSetFailure(promise, t);
        }
    }
}

io.netty.channel.AbstractChannel.AbstractUnsafe#register0

private void register0(ChannelPromise promise) {
    try {
        if (!promise.setUncancellable() || !ensureOpen(promise)) {
            return;
        }
        boolean firstRegistration = neverRegistered;
        // 1.2.1 原生的 nio channel 绑定到 selector 上,注意此时没有注册 selector 关注事件,附件为 NioServerSocketChannel
        doRegister();
        neverRegistered = false;
        registered = true;

        // 1.2.2 执行 NioServerSocketChannel 初始化器的 initChannel
        pipeline.invokeHandlerAddedIfNeeded();

        // 回调 3.2 io.netty.bootstrap.AbstractBootstrap#doBind0
        safeSetSuccess(promise);
        pipeline.fireChannelRegistered();

        // 对应 server socket channel 还未绑定,isActive 为 false
        if (isActive()) {
            if (firstRegistration) {
                pipeline.fireChannelActive();
            } else if (config().isAutoRead()) {
                beginRead();
            }
        }
    } catch (Throwable t) {
        // Close the channel directly to avoid FD leak.
        closeForcibly();
        closeFuture.setClosed();
        safeSetFailure(promise, t);
    }
}

关键代码 io.netty.channel.ChannelInitializer#initChannel

private boolean initChannel(ChannelHandlerContext ctx) throws Exception {
    if (initMap.add(ctx)) { // Guard against re-entrance.
        try {
            // 1.2.2.1 执行初始化
            initChannel((C) ctx.channel());
        } catch (Throwable cause) {
            exceptionCaught(ctx, cause);
        } finally {
            // 1.2.2.2 移除初始化器
            ChannelPipeline pipeline = ctx.pipeline();
            if (pipeline.context(this) != null) {
                pipeline.remove(this);
            }
        }
        return true;
    }
    return false;
}

关键代码 io.netty.bootstrap.AbstractBootstrap#doBind0

// 3.1 或 3.2 执行 doBind0
private static void doBind0(
        final ChannelFuture regFuture, final Channel channel,
        final SocketAddress localAddress, final ChannelPromise promise) {

    channel.eventLoop().execute(new Runnable() {
        @Override
        public void run() {
            if (regFuture.isSuccess()) {
                channel.bind(localAddress, promise).addListener(ChannelFutureListener.CLOSE_ON_FAILURE);
            } else {
                promise.setFailure(regFuture.cause());
            }
        }
    });
}

关键代码 io.netty.channel.AbstractChannel.AbstractUnsafe#bind

public final void bind(final SocketAddress localAddress, final ChannelPromise promise) {
    assertEventLoop();

    if (!promise.setUncancellable() || !ensureOpen(promise)) {
        return;
    }

    if (Boolean.TRUE.equals(config().getOption(ChannelOption.SO_BROADCAST)) &&
        localAddress instanceof InetSocketAddress &&
        !((InetSocketAddress) localAddress).getAddress().isAnyLocalAddress() &&
        !PlatformDependent.isWindows() && !PlatformDependent.maybeSuperUser()) {
        // 记录日志...
    }

    boolean wasActive = isActive();
    try {
        // 3.3 执行端口绑定
        doBind(localAddress);
    } catch (Throwable t) {
        safeSetFailure(promise, t);
        closeIfClosed();
        return;
    }

    if (!wasActive && isActive()) {
        invokeLater(new Runnable() {
            @Override
            public void run() {
                // 3.4 触发 active 事件
                pipeline.fireChannelActive();
            }
        });
    }

    safeSetSuccess(promise);
}

3.3 关键代码 io.netty.channel.socket.nio.NioServerSocketChannel#doBind

protected void doBind(SocketAddress localAddress) throws Exception {
    if (PlatformDependent.javaVersion() >= 7) {
        javaChannel().bind(localAddress, config.getBacklog());
    } else {
        javaChannel().socket().bind(localAddress, config.getBacklog());
    }
}

3.4 关键代码 io.netty.channel.DefaultChannelPipeline.HeadContext#channelActive

public void channelActive(ChannelHandlerContext ctx) {
    ctx.fireChannelActive();
    // 触发 read (NioServerSocketChannel 上的 read 不是读取数据,只是为了触发 channel 的事件注册)
    readIfIsAutoRead();
}

关键代码 io.netty.channel.nio.AbstractNioChannel#doBeginRead

protected void doBeginRead() throws Exception {
    // Channel.read() or ChannelHandlerContext.read() was called
    final SelectionKey selectionKey = this.selectionKey;
    if (!selectionKey.isValid()) {
        return;
    }

    readPending = true;

    final int interestOps = selectionKey.interestOps();
    // readInterestOp 取值是 16,在 NioServerSocketChannel 创建时初始化好,代表关注 accept 事件
    if ((interestOps & readInterestOp) == 0) {
        selectionKey.interestOps(interestOps | readInterestOp);
    }
}

3.2.2 NioEventLoop 剖析

NioEventLoop 线程不仅要处理 IO 事件,还要处理 Task(包括普通任务和定时任务),

提交任务代码 io.netty.util.concurrent.SingleThreadEventExecutor#execute

public void execute(Runnable task) {
    if (task == null) {
        throw new NullPointerException("task");
    }

    boolean inEventLoop = inEventLoop();
    // 添加任务,其中队列使用了 jctools 提供的 mpsc 无锁队列
    addTask(task);
    if (!inEventLoop) {
        // inEventLoop 如果为 false 表示由其它线程来调用 execute,即首次调用,这时需要向 eventLoop 提交首个任务,启动死循环,会执行到下面的 doStartThread
        startThread();
        if (isShutdown()) {
            // 如果已经 shutdown,做拒绝逻辑,代码略...
        }
    }

    if (!addTaskWakesUp && wakesUpForTask(task)) {
        // 如果线程由于 IO select 阻塞了,添加的任务的线程需要负责唤醒 NioEventLoop 线程
        wakeup(inEventLoop);
    }
}

唤醒 select 阻塞线程io.netty.channel.nio.NioEventLoop#wakeup

@Override
protected void wakeup(boolean inEventLoop) {
    if (!inEventLoop && wakenUp.compareAndSet(false, true)) {
        selector.wakeup();
    }
}

启动 EventLoop 主循环 io.netty.util.concurrent.SingleThreadEventExecutor#doStartThread

private void doStartThread() {
    assert thread == null;
    executor.execute(new Runnable() {
        @Override
        public void run() {
            // 将线程池的当前线程保存在成员变量中,以便后续使用
            thread = Thread.currentThread();
            if (interrupted) {
                thread.interrupt();
            }

            boolean success = false;
            updateLastExecutionTime();
            try {
                // 调用外部类 SingleThreadEventExecutor 的 run 方法,进入死循环,run 方法见下
                SingleThreadEventExecutor.this.run();
                success = true;
            } catch (Throwable t) {
                logger.warn("Unexpected exception from an event executor: ", t);
            } finally {
                // 清理工作,代码略...
            }
        }
    });
}

io.netty.channel.nio.NioEventLoop#run 主要任务是执行死循环,不断看有没有新任务,有没有 IO 事件

protected void run() {
    for (;;) {
        try {
            try {
                // calculateStrategy 的逻辑如下:
                // 有任务,会执行一次 selectNow,清除上一次的 wakeup 结果,无论有没有 IO 事件,都会跳过 switch
                // 没有任务,会匹配 SelectStrategy.SELECT,看是否应当阻塞
                switch (selectStrategy.calculateStrategy(selectNowSupplier, hasTasks())) {
                    case SelectStrategy.CONTINUE:
                        continue;

                    case SelectStrategy.BUSY_WAIT:

                    case SelectStrategy.SELECT:
                        // 因为 IO 线程和提交任务线程都有可能执行 wakeup,而 wakeup 属于比较昂贵的操作,因此使用了一个原子布尔对象 wakenUp,它取值为 true 时,表示该由当前线程唤醒
                        // 进行 select 阻塞,并设置唤醒状态为 false
                        boolean oldWakenUp = wakenUp.getAndSet(false);

                        // 如果在这个位置,非 EventLoop 线程抢先将 wakenUp 置为 true,并 wakeup
                        // 下面的 select 方法不会阻塞
                        // 等 runAllTasks 处理完成后,到再循环进来这个阶段新增的任务会不会及时执行呢?
                        // 因为 oldWakenUp 为 true,因此下面的 select 方法就会阻塞,直到超时
                        // 才能执行,让 select 方法无谓阻塞
                        select(oldWakenUp);

                        if (wakenUp.get()) {
                            selector.wakeup();
                        }
                    default:
                }
            } catch (IOException e) {
                rebuildSelector0();
                handleLoopException(e);
                continue;
            }

            cancelledKeys = 0;
            needsToSelectAgain = false;
            // ioRatio 默认是 50
            final int ioRatio = this.ioRatio;
            if (ioRatio == 100) {
                try {
                    processSelectedKeys();
                } finally {
                    // ioRatio 为 100 时,总是运行完所有非 IO 任务
                    runAllTasks();
                }
            } else {                
                final long ioStartTime = System.nanoTime();
                try {
                    processSelectedKeys();
                } finally {
                    // 记录 io 事件处理耗时
                    final long ioTime = System.nanoTime() - ioStartTime;
                    // 运行非 IO 任务,一旦超时会退出 runAllTasks
                    runAllTasks(ioTime * (100 - ioRatio) / ioRatio);
                }
            }
        } catch (Throwable t) {
            handleLoopException(t);
        }
        try {
            if (isShuttingDown()) {
                closeAll();
                if (confirmShutdown()) {
                    return;
                }
            }
        } catch (Throwable t) {
            handleLoopException(t);
        }
    }
}

这里有个费解的地方就是 wakeup,它既可以由提交任务的线程来调用(比较好理解),也可以由 EventLoop 线程来调用(比较费解),这里要知道 wakeup 方法的效果: 由非 EventLoop 线程调用,会唤醒当前在执行 select 阻塞的 EventLoop 线程 由 EventLoop 自己调用,会本次的 wakeup 会取消下一次的 select 操作

参考下图

io.netty.channel.nio.NioEventLoop#select

private void select(boolean oldWakenUp) throws IOException {
    Selector selector = this.selector;
    try {
        int selectCnt = 0;
        long currentTimeNanos = System.nanoTime();
        // 计算等待时间
        // * 没有 scheduledTask,超时时间为 1s
        // * 有 scheduledTask,超时时间为 `下一个定时任务执行时间 - 当前时间`
        long selectDeadLineNanos = currentTimeNanos + delayNanos(currentTimeNanos);

        for (;;) {
            long timeoutMillis = (selectDeadLineNanos - currentTimeNanos + 500000L) / 1000000L;
            // 如果超时,退出循环
            if (timeoutMillis <= 0) {
                if (selectCnt == 0) {
                    selector.selectNow();
                    selectCnt = 1;
                }
                break;
            }

            // 如果期间又有 task 退出循环,如果没这个判断,那么任务就会等到下次 select 超时时才能被执行
            // wakenUp.compareAndSet(false, true) 是让非 NioEventLoop 不必再执行 wakeup
            if (hasTasks() && wakenUp.compareAndSet(false, true)) {
                selector.selectNow();
                selectCnt = 1;
                break;
            }

            // select 有限时阻塞
            // 注意 nio 有 bug,当 bug 出现时,select 方法即使没有时间发生,也不会阻塞住,导致不断空轮询,cpu 占用 100%
            int selectedKeys = selector.select(timeoutMillis);
            // 计数加 1
            selectCnt ++;

            // 醒来后,如果有 IO 事件、或是由非 EventLoop 线程唤醒,或者有任务,退出循环
            if (selectedKeys != 0 || oldWakenUp || wakenUp.get() || hasTasks() || hasScheduledTasks()) {
                break;
            }
            if (Thread.interrupted()) {
                   // 线程被打断,退出循环
                // 记录日志
                selectCnt = 1;
                break;
            }

            long time = System.nanoTime();
            if (time - TimeUnit.MILLISECONDS.toNanos(timeoutMillis) >= currentTimeNanos) {
                // 如果超时,计数重置为 1,下次循环就会 break
                selectCnt = 1;
            } 
            // 计数超过阈值,由 io.netty.selectorAutoRebuildThreshold 指定,默认 512
            // 这是为了解决 nio 空轮询 bug
            else if (SELECTOR_AUTO_REBUILD_THRESHOLD > 0 &&
                    selectCnt >= SELECTOR_AUTO_REBUILD_THRESHOLD) {
                // 重建 selector
                selector = selectRebuildSelector(selectCnt);
                selectCnt = 1;
                break;
            }

            currentTimeNanos = time;
        }

        if (selectCnt > MIN_PREMATURE_SELECTOR_RETURNS) {
            // 记录日志
        }
    } catch (CancelledKeyException e) {
        // 记录日志
    }
}

处理 keys io.netty.channel.nio.NioEventLoop#processSelectedKeys

private void processSelectedKeys() {
    if (selectedKeys != null) {
        // 通过反射将 Selector 实现类中的就绪事件集合替换为 SelectedSelectionKeySet 
        // SelectedSelectionKeySet 底层为数组实现,可以提高遍历性能(原本为 HashSet)
        processSelectedKeysOptimized();
    } else {
        processSelectedKeysPlain(selector.selectedKeys());
    }
}

io.netty.channel.nio.NioEventLoop#processSelectedKey

private void processSelectedKey(SelectionKey k, AbstractNioChannel ch) {
    final AbstractNioChannel.NioUnsafe unsafe = ch.unsafe();
    // 当 key 取消或关闭时会导致这个 key 无效
    if (!k.isValid()) {
        // 无效时处理...
        return;
    }

    try {
        int readyOps = k.readyOps();
        // 连接事件
        if ((readyOps & SelectionKey.OP_CONNECT) != 0) {
            int ops = k.interestOps();
            ops &= ~SelectionKey.OP_CONNECT;
            k.interestOps(ops);

            unsafe.finishConnect();
        }

        // 可写事件
        if ((readyOps & SelectionKey.OP_WRITE) != 0) {
            ch.unsafe().forceFlush();
        }

        // 可读或可接入事件
        if ((readyOps & (SelectionKey.OP_READ | SelectionKey.OP_ACCEPT)) != 0 || readyOps == 0) {
            // 如果是可接入 io.netty.channel.nio.AbstractNioMessageChannel.NioMessageUnsafe#read
            // 如果是可读 io.netty.channel.nio.AbstractNioByteChannel.NioByteUnsafe#read
            unsafe.read();
        }
    } catch (CancelledKeyException ignored) {
        unsafe.close(unsafe.voidPromise());
    }
}

3.2.3 accept 剖析

nio 中如下代码,在 netty 中的流程

//1 阻塞直到事件发生
selector.select();

Iterator<SelectionKey> iter = selector.selectedKeys().iterator();
while (iter.hasNext()) {    
    //2 拿到一个事件
    SelectionKey key = iter.next();

    //3 如果是 accept 事件
    if (key.isAcceptable()) {

        //4 执行 accept
        SocketChannel channel = serverSocketChannel.accept();
        channel.configureBlocking(false);

        //5 关注 read 事件
        channel.register(selector, SelectionKey.OP_READ);
    }
    // ...
}

先来看可接入事件处理(accept)

io.netty.channel.nio.AbstractNioMessageChannel.NioMessageUnsafe#read

public void read() {
    assert eventLoop().inEventLoop();
    final ChannelConfig config = config();
    final ChannelPipeline pipeline = pipeline();    
    final RecvByteBufAllocator.Handle allocHandle = unsafe().recvBufAllocHandle();
    allocHandle.reset(config);

    boolean closed = false;
    Throwable exception = null;
    try {
        try {
            do {
                // doReadMessages 中执行了 accept 并创建 NioSocketChannel 作为消息放入 readBuf
                // readBuf 是一个 ArrayList 用来缓存消息
                int localRead = doReadMessages(readBuf);
                if (localRead == 0) {
                    break;
                }
                if (localRead < 0) {
                    closed = true;
                    break;
                }
                // localRead 为 1,就一条消息,即接收一个客户端连接
                allocHandle.incMessagesRead(localRead);
            } while (allocHandle.continueReading());
        } catch (Throwable t) {
            exception = t;
        }

        int size = readBuf.size();
        for (int i = 0; i < size; i ++) {
            readPending = false;
            // 触发 read 事件,让 pipeline 上的 handler 处理,这时是处理
            // io.netty.bootstrap.ServerBootstrap.ServerBootstrapAcceptor#channelRead
            pipeline.fireChannelRead(readBuf.get(i));
        }
        readBuf.clear();
        allocHandle.readComplete();
        pipeline.fireChannelReadComplete();

        if (exception != null) {
            closed = closeOnReadError(exception);

            pipeline.fireExceptionCaught(exception);
        }

        if (closed) {
            inputShutdown = true;
            if (isOpen()) {
                close(voidPromise());
            }
        }
    } finally {
        if (!readPending && !config.isAutoRead()) {
            removeReadOp();
        }
    }
}

关键代码 io.netty.bootstrap.ServerBootstrap.ServerBootstrapAcceptor#channelRead

public void channelRead(ChannelHandlerContext ctx, Object msg) {
    // 这时的 msg 是 NioSocketChannel
    final Channel child = (Channel) msg;

    // NioSocketChannel 添加  childHandler 即初始化器
    child.pipeline().addLast(childHandler);

    // 设置选项
    setChannelOptions(child, childOptions, logger);

    for (Entry<AttributeKey<?>, Object> e: childAttrs) {
        child.attr((AttributeKey<Object>) e.getKey()).set(e.getValue());
    }

    try {
        // 注册 NioSocketChannel 到 nio worker 线程,接下来的处理也移交至 nio worker 线程
        childGroup.register(child).addListener(new ChannelFutureListener() {
            @Override
            public void operationComplete(ChannelFuture future) throws Exception {
                if (!future.isSuccess()) {
                    forceClose(child, future.cause());
                }
            }
        });
    } catch (Throwable t) {
        forceClose(child, t);
    }
}

又回到了熟悉的 io.netty.channel.AbstractChannel.AbstractUnsafe#register 方法

public final void register(EventLoop eventLoop, final ChannelPromise promise) {
    // 一些检查,略...

    AbstractChannel.this.eventLoop = eventLoop;

    if (eventLoop.inEventLoop()) {
        register0(promise);
    } else {
        try {
            // 这行代码完成的事实是 nio boss -> nio worker 线程的切换
            eventLoop.execute(new Runnable() {
                @Override
                public void run() {
                    register0(promise);
                }
            });
        } catch (Throwable t) {
            // 日志记录...
            closeForcibly();
            closeFuture.setClosed();
            safeSetFailure(promise, t);
        }
    }
}

io.netty.channel.AbstractChannel.AbstractUnsafe#register0

private void register0(ChannelPromise promise) {
    try {
        if (!promise.setUncancellable() || !ensureOpen(promise)) {
            return;
        }
        boolean firstRegistration = neverRegistered;
        doRegister();
        neverRegistered = false;
        registered = true;

        // 执行初始化器,执行前 pipeline 中只有 head -> 初始化器 -> tail
        pipeline.invokeHandlerAddedIfNeeded();
        // 执行后就是 head -> logging handler -> my handler -> tail

        safeSetSuccess(promise);
        pipeline.fireChannelRegistered();

        if (isActive()) {
            if (firstRegistration) {
                // 触发 pipeline 上 active 事件
                pipeline.fireChannelActive();
            } else if (config().isAutoRead()) {
                beginRead();
            }
        }
    } catch (Throwable t) {
        closeForcibly();
        closeFuture.setClosed();
        safeSetFailure(promise, t);
    }
}

回到了熟悉的代码 io.netty.channel.DefaultChannelPipeline.HeadContext#channelActive

public void channelActive(ChannelHandlerContext ctx) {
    ctx.fireChannelActive();
    // 触发 read (NioSocketChannel 这里 read,只是为了触发 channel 的事件注册,还未涉及数据读取)
    readIfIsAutoRead();
}

io.netty.channel.nio.AbstractNioChannel#doBeginRead

protected void doBeginRead() throws Exception {
    // Channel.read() or ChannelHandlerContext.read() was called
    final SelectionKey selectionKey = this.selectionKey;
    if (!selectionKey.isValid()) {
        return;
    }

    readPending = true;
    // 这时候 interestOps 是 0
    final int interestOps = selectionKey.interestOps();
    if ((interestOps & readInterestOp) == 0) {
        // 关注 read 事件
        selectionKey.interestOps(interestOps | readInterestOp);
    }
}

3.2.4 read 剖析

再来看可读事件 io.netty.channel.nio.AbstractNioByteChannel.NioByteUnsafe#read,注意发送的数据未必能够一次读完,因此会触发多次 nio read 事件,一次事件内会触发多次 pipeline read,一次事件会触发一次 pipeline read complete

public final void read() {
    final ChannelConfig config = config();
    if (shouldBreakReadReady(config)) {
        clearReadPending();
        return;
    }
    final ChannelPipeline pipeline = pipeline();
    // io.netty.allocator.type 决定 allocator 的实现
    final ByteBufAllocator allocator = config.getAllocator();
    // 用来分配 byteBuf,确定单次读取大小
    final RecvByteBufAllocator.Handle allocHandle = recvBufAllocHandle();
    allocHandle.reset(config);

    ByteBuf byteBuf = null;
    boolean close = false;
    try {
        do {
            byteBuf = allocHandle.allocate(allocator);
            // 读取
            allocHandle.lastBytesRead(doReadBytes(byteBuf));
            if (allocHandle.lastBytesRead() <= 0) {
                byteBuf.release();
                byteBuf = null;
                close = allocHandle.lastBytesRead() < 0;
                if (close) {
                    readPending = false;
                }
                break;
            }

            allocHandle.incMessagesRead(1);
            readPending = false;
            // 触发 read 事件,让 pipeline 上的 handler 处理,这时是处理 NioSocketChannel 上的 handler
            pipeline.fireChannelRead(byteBuf);
            byteBuf = null;
        } 
        // 是否要继续循环
        while (allocHandle.continueReading());

        allocHandle.readComplete();
        // 触发 read complete 事件
        pipeline.fireChannelReadComplete();

        if (close) {
            closeOnRead(pipeline);
        }
    } catch (Throwable t) {
        handleReadException(pipeline, byteBuf, t, close, allocHandle);
    } finally {
        if (!readPending && !config.isAutoRead()) {
            removeReadOp();
        }
    }
}

io.netty.channel.DefaultMaxMessagesRecvByteBufAllocator.MaxMessageHandle#continueReading(io.netty.util.UncheckedBooleanSupplier)

public boolean continueReading(UncheckedBooleanSupplier maybeMoreDataSupplier) {
    return 
           // 一般为 true
           config.isAutoRead() &&
           // respectMaybeMoreData 默认为 true
           // maybeMoreDataSupplier 的逻辑是如果预期读取字节与实际读取字节相等,返回 true
           (!respectMaybeMoreData || maybeMoreDataSupplier.get()) &&
           // 小于最大次数,maxMessagePerRead 默认 16
           totalMessages < maxMessagePerRead &&
           // 实际读到了数据
           totalBytesRead > 0;
}

;