Bootstrap

Dubbo 线程池策略

Dubbo 线程池

Dubbo 线程模型文章提到,处理请求分为IO 线程和业务线程,

Dubbo 线程池策略主要针对业务线程池,Dubbo 内部给我们实现了
四种fixed、cached、limited、eager线程池,默认是fixed。

Dubbo 线程池,主要还是基于JDK线程池几个参数做文章。

  • 核心线程池数
  • 最大线程池数
  • keep alive时间
  • 等待队列

@SPI("fixed")
public interface ThreadPool {

    /**
     * Thread pool
     *
     * @param url URL contains thread parameter
     * @return thread pool
     */
    @Adaptive({THREADPOOL_KEY})
    Executor getExecutor(URL url);

}
fixed=org.apache.dubbo.common.threadpool.support.fixed.FixedThreadPool
cached=org.apache.dubbo.common.threadpool.support.cached.CachedThreadPool
limited=org.apache.dubbo.common.threadpool.support.limited.LimitedThreadPool
eager=org.apache.dubbo.common.threadpool.support.eager.EagerThreadPool

fixed 线程池

线程池数固定,最大线程池数等于核心线程池数,因此线程数达到核心线程池数时不会再额外开启线程,

  • keepAlive 时间设置为0,因为不会用到(线程不会超过核心线程池数)

  • queues == 0 时 使用的 SynchronousQueue(默认)

它是个零容量BlockQueue :SynchronousQueue内部并不存储任何元素,即它的容量为0。
也就意味着,当一个线程执行插入操作(put)时,它必须等待另一个线程执行对应的删除操作(take),反之亦然。这种机制确保了数据的直接传递,减少了数据在队列中的等待时间。

  • 其他情况使用 LinkedBlockingQueue
public class FixedThreadPool implements ThreadPool {

    @Override
    public Executor getExecutor(URL url) {
        String name = url.getParameter(THREAD_NAME_KEY, DEFAULT_THREAD_NAME);
        int threads = url.getParameter(THREADS_KEY, DEFAULT_THREADS);
        int queues = url.getParameter(QUEUES_KEY, DEFAULT_QUEUES);
        return new ThreadPoolExecutor(threads, threads, 0, TimeUnit.MILLISECONDS,
                queues == 0 ? new SynchronousQueue<Runnable>() :
                        (queues < 0 ? new LinkedBlockingQueue<Runnable>()
                                : new LinkedBlockingQueue<Runnable>(queues)),
                new NamedInternalThreadFactory(name, true), new AbortPolicyWithReport(name, url));
    }

}

EagerThreadPool

默认DEFAULT_QUEUES = 0;
默认的TaskQueue 大小为0

当线程池线程数达核心线程数时,此时尝试开启新线程执行任务。(因为TaskQueue大小为0,等同于没有等待队列,直接开启新线程执行)


public class EagerThreadPool implements ThreadPool {

    @Override
    public Executor getExecutor(URL url) {
        String name = url.getParameter(THREAD_NAME_KEY, DEFAULT_THREAD_NAME);
        int cores = url.getParameter(CORE_THREADS_KEY, DEFAULT_CORE_THREADS);
        int threads = url.getParameter(THREADS_KEY, Integer.MAX_VALUE);
        int queues = url.getParameter(QUEUES_KEY, DEFAULT_QUEUES);
        int alive = url.getParameter(ALIVE_KEY, DEFAULT_ALIVE);

        // init queue and executor
        TaskQueue<Runnable> taskQueue = new TaskQueue<Runnable>(queues <= 0 ? 1 : queues);
        EagerThreadPoolExecutor executor = new EagerThreadPoolExecutor(cores,
                threads,
                alive,
                TimeUnit.MILLISECONDS,
                taskQueue,
                new NamedInternalThreadFactory(name, true),
                new AbortPolicyWithReport(name, url));
        taskQueue.setExecutor(executor);
        return executor;
    }
}

LimitedThreadPool

keepAlive time 是 Long.MAX_VALUE
相当于线程一直不会回收,当等待队列满了,就会开启新线程,并且新开启的线程不会被回收,
线程池数量不断动态增加,直到达到最大线程池数。

public class LimitedThreadPool implements ThreadPool {

    @Override
    public Executor getExecutor(URL url) {
        String name = url.getParameter(THREAD_NAME_KEY, DEFAULT_THREAD_NAME);
        int cores = url.getParameter(CORE_THREADS_KEY, DEFAULT_CORE_THREADS);
        int threads = url.getParameter(THREADS_KEY, DEFAULT_THREADS);
        int queues = url.getParameter(QUEUES_KEY, DEFAULT_QUEUES);
        return new ThreadPoolExecutor(cores, threads, Long.MAX_VALUE, TimeUnit.MILLISECONDS,
                queues == 0 ? new SynchronousQueue<Runnable>() :
                        (queues < 0 ? new LinkedBlockingQueue<Runnable>()
                                : new LinkedBlockingQueue<Runnable>(queues)),
                new NamedInternalThreadFactory(name, true), new AbortPolicyWithReport(name, url));
    }

}

CachedThreadPool

DEFAULT_CORE_THREADS = 0;

DEFAULT_QUEUES = 0;

DEFAULT_ALIVE = 60 * 1000

默认核心线程池数为0阻塞队列大小也为0 ,keepAlive 时间默认 1分钟。

新请求到来,由于核心线程为0,且队列大小为0 ,因此会直接开启新线程执行, 当达到keepAlive后会自动被回收。

public class public class CachedThreadPool implements ThreadPool {

    @Override
    public Executor getExecutor(URL url) {
        String name = url.getParameter(THREAD_NAME_KEY, DEFAULT_THREAD_NAME);
        int cores = url.getParameter(CORE_THREADS_KEY, DEFAULT_CORE_THREADS);
        int threads = url.getParameter(THREADS_KEY, Integer.MAX_VALUE);
        int queues = url.getParameter(QUEUES_KEY, DEFAULT_QUEUES);
        int alive = url.getParameter(ALIVE_KEY, DEFAULT_ALIVE);
        return new ThreadPoolExecutor(cores, threads, alive, TimeUnit.MILLISECONDS,
                queues == 0 ? new SynchronousQueue<Runnable>() :
                        (queues < 0 ? new LinkedBlockingQueue<Runnable>()
                                : new LinkedBlockingQueue<Runnable>(queues)),
                new NamedInternalThreadFactory(name, true), new AbortPolicyWithReport(name, url));
    }
}

    @Override
    public Executor getExecutor(URL url) {
        String name = url.getParameter(THREAD_NAME_KEY, DEFAULT_THREAD_NAME);
        int cores = url.getParameter(CORE_THREADS_KEY, DEFAULT_CORE_THREADS);
        int threads = url.getParameter(THREADS_KEY, Integer.MAX_VALUE);
        int queues = url.getParameter(QUEUES_KEY, DEFAULT_QUEUES);
        int alive = url.getParameter(ALIVE_KEY, DEFAULT_ALIVE);
        return new ThreadPoolExecutor(cores, threads, alive, TimeUnit.MILLISECONDS,
                queues == 0 ? new SynchronousQueue<Runnable>() :
                        (queues < 0 ? new LinkedBlockingQueue<Runnable>()
                                : new LinkedBlockingQueue<Runnable>(queues)),
                new NamedInternalThreadFactory(name, true), new AbortPolicyWithReport(name, url));
    }
}


总结

Dubbo 线程池,主要还是基于JDK线程池几个参数做文章,并没有发明什么新东西,因此理解Dubbo 线程池前提掌握jdk 线程池的工作原理,当然也可以自定义扩展实现。 指定线程池方式如下

<dubbo:protocol threadpool="xxx" />

<dubbo:provider threadpool="xxx" />
;