给一个N*N的矩阵A,其中元素是0或1。A[i][j]表示在第i行第j列的数。最初时,A[i][j]=0(1<=i,j<=N)。我们以以下方式来改变矩阵,给定一个矩形的左上角为(x1,y1)和右下角为(x2,y2),我们对这个矩形范围内的所有元素进行“非”操作(如果它是一个'0',那么变化为'1',否则它变为'0')。
请你编写一个程序完成以下两种操作:
比较简单
用二维树状数组,每次区间增加1,然后单点查询每一个点对2取模的值。
好做完了。
#include <bits/stdc++.h>
using namespace std;
const long long N = 1050;
long long n,m;
class owl{
public:
long long tr[N][N];
long long lowbit(long long x){
return x & -x;
}
void add(long long x,long long y,long long d){
for (long long i = x; i <= n; i += lowbit(i)){
for (long long j = y; j <= n; j += lowbit(j)){
tr[i][j] += d;
}
}
}
long long sum(long long x,long long y){
long long res = 0;
for (long long i = x; i ; i -= lowbit(i)){
for (long long j = y; j; j -= lowbit(j)){
res += tr[i][j];
}
}
return res;
}
}A,B,C,D;
void owladd(long long a,long long b,long long c){
A.add(a,b,c);
B.add(a,b,c * a);
C.add(a,b,c * b);
D.add(a,b,a * b * c);
}
long long owlsum(long long a,long long b){
return A.sum(a,b) * (a * b + a + b + 1) - B.sum(a,b) * (b + 1) - C.sum(a,b) * (a + 1) + D.sum(a,b);
}
int main(){
int T;
cin >> T;
while (T -- ){
cin >> n >> m;
memset(A.tr,0,sizeof A.tr);
memset(B.tr,0,sizeof B.tr);
memset(C.tr,0,sizeof C.tr);
memset(D.tr,0,sizeof D.tr);
while (m -- ){
char op;
cin >> op;
if (op == 'C'){
long long a,b,c,d,z = 1;
cin >> a >> b >> c >> d;
owladd(a,b,z);
owladd(a,d + 1,-z);
owladd(c + 1,b,-z);
owladd(c + 1,d + 1,z);
}
else if (op == 'Q'){
long long a,b,c,d;
cin >> a >> b;
c = a,d = b;
cout << (owlsum(c,d) - owlsum(a - 1,d) - owlsum(c,b - 1) + owlsum(a - 1,b - 1)) % 2 << endl;
}
}
cout << endl;
}
return 0;
}