采用深度优先搜索的办法遍历上图,节点之间的关系我采用的是二维数组来存储,若相连相应的值为1,不想连相应的值为0。用visit数组存储节点是否被访问过。注明:图的深度优先搜索遍历得到的结果不唯一
#include "iostream"
using namespace std;
void dfs(int i,int a[][9]);
int visit[9] = { 0 };//0表示未被访问过,1表示访问过
char b[9] = { 'v1','v2','v3','v4','v5','v6','v7','v8','v9' };
int main()
{
int a[9][9] = { {0,1,0,1,0,0,0,0,0},
{1,0,1,0,1,0,0,0,0},
{0,1,0,0,0,1,0,0,0},
{1,0,0,0,1,0,1,0,0},
{0,1,0,1,0,0,1,0,0},
{0,0,1,0,0,0,0,0,0},
{0,0,0,1,1,0,0,1,0},
{0,0,0,0,0,0,1,0,1},
{0,0,0,0,1,0,0,1,0}, };
dfs(0, a);
system("pause");
return 0;
}
void dfs(int i,int a[][9])
{
if (visit[i] == 1)
return;
else
{
cout << b[i];
visit[i] = 1;
for (int m = 0; m < 9; m++)
{
if (a[i][m] == 1)
{
dfs(m,a);
}
}
}
}
具体应用
输入一个m行n列的字符矩阵,只要有两个‘@’相邻就能组成一个联通块,如下面的字符矩阵有2个联通块
* * * * @
* @ @ * @
* @ * * @
@ @ @ * @
@ @ * * @
#include "iostream"
using namespace std;
int visit[5][5] = { 0 };//0表示未访问,1表示访问
int dfs(int i,int j,int a[][5],int &num);
int main()
{
//-1代表*号,9代表@号
int a[5][5] = { {-1,-1,-1,-1,9},
{-1,9,9,-1,9},
{-1,9,-1,-1,9},
{9,9,9,-1,9},
{9,9,-1,-1,9}};
int num = 0;//用num表示每个连通图的节点个数
int n = 0;
for(int i=0;i<5;i++)
for (int j = 0; j < 5; j++)
{
if (visit[i][j] == 0 && a[i][j] == 9)//符号是@,且未被访问
{
num=dfs(i, j, a,num);
cout << num << endl;
num = 0;
n++;
}
}
cout <<"共有几个连通图"<< n;
system("pause");
return 0;
}
int dfs(int i, int j, int a[][5], int &num)
{
if (visit[i][j] == 1|| a[i][j]==-1||i<0||i>4||j<0||j>4)
return num;
else
{
visit[i][j] = 1;
num = num + 1;
dfs(i + 1, j, a,num);
dfs(i, j + 1, a,num);
dfs(i - 1, j, a,num);
dfs(i, j - 1, a,num);
}
}
理解DFS对理解递归有很大的帮助.