目录
掩膜方法1:
坐标点需要顺时针顺序。
img = cv2.imread(r'd:/nv1.jpg')
shape = img.shape
points_704 = np.array([[80, 130], [140, 130], [170, 50], [225, 50]])
img_origin = img.copy()
cv2.fillConvexPoly(img, points_704, 1)
bitwisexor = cv2.bitwise_xor(img, img_origin)
cv2.imshow("asdf",bitwisexor)
cv2.waitKey(0)
提取掩摸方法2:提取掩膜内的图片:其余是0
# coding=utf-8
import numpy as np
import cv2
image = cv2.imread("d:/bgs.jpg")
b = np.array([[[100,100], [250,100], [300,220],[100,230]]], dtype = np.int32)
im = np.zeros(image.shape[:2], dtype = "uint8")
cv2.polylines(im, b, 1, 255)
cv2.fillPoly(im, b, 255)
mask = im
cv2.imshow("Mask", mask)
masked = cv2.bitwise_and(image, image, mask=mask)
cv2.imshow("Mask to Image", masked)
cv2.waitKey(0)
改变掩摸内容:
# -*- coding: utf-8 -*-
import os
import numpy as np
import cv2
import cv2
import numpy as np
mask_threth = 50
img = cv2.imread('d:/rat20191114_466-100-100.jpg') #自己qq截图一张图片就行,要大于下面的坐标点
# binary mask
coordinates = []
coordinate1 = [[[40, 135], [168,132], [264,330], [2,328]]]
coordinate2 = [[[300, 300], [600,300], [600,600], [300,600]]]
coordinate1 = np.array(coordinate1)
coordinate2 = np.array(coordinate2)
coordinates.append(coordinate1)
coordinates.append(coordinate2)
mask = np.zeros(img.shape[:2], dtype=np.int8)
mask = cv2.fillPoly(mask, coordinates, 255)
cv2.imwrite('./mask1.png', mask)
bbox_mask = mask
color_mask = np.array([0, 0, 255], dtype=np.uint8)
bbox_mask = bbox_mask.astype(np.bool)
# cv2.imwrite('./bbox_mask.png', bbox_mask)
img[bbox_mask] = color_mask * 0.5
cv2.imshow("sadf",img)
cv2.waitKey()
掩摸反向选择操作,比如改变背景:
# -*- coding: utf-8 -*-
import os
import numpy as np
import cv2
import cv2
import numpy as np
mask_threth = 50
img = cv2.imread('d:/rat20191114_466-100-100.jpg') #自己qq截图一张图片就行,要大于下面的坐标点
# binary mask
coordinates = []
coordinate1 = [[[40, 135], [168,132], [264,330], [2,328]]]
coordinate2 = [[[300, 300], [600,300], [600,600], [300,600]]]
coordinate1 = np.array(coordinate1)
coordinate2 = np.array(coordinate2)
coordinates.append(coordinate1)
coordinates.append(coordinate2)
bbox_mask = np.zeros(img.shape[:2], dtype=np.int8)
bbox_mask[::]=255
bbox_mask = cv2.fillPoly(bbox_mask, coordinates, 0)
cv2.imshow("mask",bbox_mask)
color_mask = np.array([0, 0, 255], dtype=np.uint8)* 0.5
bbox_mask = bbox_mask.astype(np.bool)
img[bbox_mask] =[0, 0, 255]# color_mask
cv2.imshow("sadf",img)
cv2.waitKey()
如果是两张图叠加:
bbox_mask = bbox_mask.astype(np.bool)
后面的赋值颜色:img[bbox_mask] =[0, 0, 255]# color_mask
改为同等大小的图的掩摸部分:
src2[bbox_mask] = img_o[bbox_mask]
python画多边形:
注意:a为多边形坐标点,需要是三维的,比如[1,4,2]
外面的是list或者numpy矩阵都支持。
import numpy as np
import cv2
a = np.array([[10,10], [50,10], [100,100], [10,80]], dtype = np.int32)
b = np.array([[[50,100], [200,230], [150,200], [150,220]]], dtype = np.int32)
print(a.shape)
im = np.zeros([240, 320,3], dtype = np.uint8)
cv2.polylines(im, [a], 1, (0,0,255))
cv2.fillPoly(im, b, (0,255,255))
cv2.imshow("image",im)
cv2.waitKey()
多边形ROI,主要利用鼠标交互进行绘制:
1. 单击左键,选择多边形的点;
2. 单击右键,删除最近一次选择的点;
3. 单击中键,确定ROI区域并可视化。
4. 按”S“键,将多边形ROI区域的点保存到本地”config.pkl"文件中。
话不多说,以下是核心代码
import cv2
import numpy as np
import joblib
pts = [] # 用于存放点
# 统一的:mouse callback function
def draw_roi(event, x, y, flags, param):
img2 = img.copy()
if event == cv2.EVENT_LBUTTONDOWN: # 左键点击,选择点
pts.append((x, y))
if event == cv2.EVENT_RBUTTONDOWN: # 右键点击,取消最近一次选择的点
pts.pop()
if event == cv2.EVENT_MBUTTONDOWN: # 中键绘制轮廓
mask = np.zeros(img.shape, np.uint8)
points = np.array(pts, np.int32)
points = points.reshape((-1, 1, 2))
# 画多边形
mask = cv2.polylines(mask, [points], True, (255, 255, 255), 2)
mask2 = cv2.fillPoly(mask.copy(), [points], (255, 255, 255)) # 用于求 ROI
mask3 = cv2.fillPoly(mask.copy(), [points], (0, 255, 0)) # 用于 显示在桌面的图像
show_image = cv2.addWeighted(src1=img, alpha=0.8, src2=mask3, beta=0.2, gamma=0)
cv2.imshow("mask", mask2)
cv2.imshow("show_img", show_image)
ROI = cv2.bitwise_and(mask2, img)
cv2.imshow("ROI", ROI)
cv2.waitKey(0)
if len(pts) > 0:
# 将pts中的最后一点画出来
cv2.circle(img2, pts[-1], 3, (0, 0, 255), -1)
if len(pts) > 1:
# 画线
for i in range(len(pts) - 1):
cv2.circle(img2, pts[i], 5, (0, 0, 255), -1) # x ,y 为鼠标点击地方的坐标
cv2.line(img=img2, pt1=pts[i], pt2=pts[i + 1], color=(255, 0, 0), thickness=2)
cv2.imshow('image', img2)
# 创建图像与窗口并将窗口与回调函数绑定
img = cv2.imread("111.jpg")
cv2.namedWindow('image')
cv2.setMouseCallback('image', draw_roi)
print("[INFO] 单击左键:选择点,单击右键:删除上一次选择的点,单击中键:确定ROI区域")
print("[INFO] 按‘S'确定选择区域并保存")
print("[INFO] 按 ESC 退出")
while True:
key = cv2.waitKey(1) & 0xFF
if key == 27:
break
if key == ord("s"):
saved_data = {
"ROI": pts
}
joblib.dump(value=saved_data, filename="config.pkl")
print("[INFO] ROI坐标已保存到本地.")
break
cv2.destroyAllWindows()
绘制不规则多边形:
然后按鼠标中间
多边形ROI实例,保存csv
import cv2
import numpy as np
import pandas as pd
from skimage import io
from get_point import cross_point,GetCrossPoint,Point,Line
label_file='S1.csv'
df_label = pd.read_csv(label_file)
def get_temper(value):
return value/ 100 - 273.15
aaa=[]
import pandas as pd
headers = ['file_name', 'max_temp', 'min_temp', 'mean_temp','len']
datas=[]
max_temp=0
min_temp=100
for index_a, data in df_label.iterrows():
id_path="S1/"+ data["ID"]+".tiff"
img_path="S1/"+ data["ID"].replace("R","N")+".jpg"
img_show=cv2.imread(img_path)
img_tif = io.imread(id_path)
end=73
for ai in range(73):
p_x = data['x' + str(ai)]
p_y = data['y' + str(ai)]
if np.isnan(p_x) or np.isnan(p_y):
if ai == 43:
end = 42
break
print("end",end)
pts = []
pts_right=[]
for ai in range(end):
p_x=data['x'+str(ai)]
p_y=data['y'+str(ai)]
if np.isnan(p_x) or np.isnan(p_y):
continue
p_x=int(min(img_show.shape[1]-1,max(0,p_x)))
p_y=int(min(img_show.shape[0]-1,max(0,p_y)))
font = cv2.FONT_HERSHEY_SIMPLEX
if end==42:
if ai > 27 and ai < 36: # mouse
continue
cv2.circle(img_show, (int(p_x), int(p_y)), 2, color=(0, 255, 0))
cv2.putText(img_show, str(ai ), (p_x, p_y + 5), font, 0.2, (0, 0, 255), 1, cv2.LINE_AA)
# print(ai,p_x, p_y, round(img_tif[int(p_y)][int(p_x)] , 2))
elif ai>16 and ai<22: #nose
continue
cv2.circle(img_show, (int(p_x), int(p_y)), 2, color=(0, 255, 0))
cv2.putText(img_show, str(ai), (p_x, p_y + 5), font, 0.2, (0, 0, 255), 1, cv2.LINE_AA)
pts.append([p_x, p_y])
elif ai>=39 and ai<=44: #forehead
continue
cv2.circle(img_show, (int(p_x), int(p_y)), 2, color=(0, 255, 0))
cv2.putText(img_show, str(ai), (p_x, p_y + 5), font, 0.2, (0, 0, 255), 1, cv2.LINE_AA)
pts.append([p_x, p_y])
elif (ai >= 10 and ai <= 11) or ( ai>37 and ai<=38): # xiaba
# continue
cv2.circle(img_show, (int(p_x), int(p_y)), 2, color=(0, 255, 0))
cv2.putText(img_show, str(ai), (p_x, p_y + 5), font, 0.2, (0, 0, 255), 1, cv2.LINE_AA)
pts.append([p_x, p_y])
else:
continue
cv2.circle(img_show, (int(p_x), int(p_y)), 2, color=(0, 255, 0))
cv2.putText(img_show, str(ai), (p_x, p_y + 5), font, 0.2, (0, 0, 255), 1, cv2.LINE_AA)
pts.append([p_x, p_y])
elif end==73:
if ai > 27 and ai < 36: #nose
continue
cv2.circle(img_show, (int(p_x), int(p_y)), 2, color=(0, 255, 0))
cv2.putText(img_show, str(ai ), (p_x, p_y + 5), font, 0.2, (0, 0, 255), 1, cv2.LINE_AA)
# print(ai,p_x, p_y, round(img_tif[int(p_y)][int(p_x)] , 2))
pts.append([p_x, p_y])
elif ai >= 68 and ai <= 72: # forehead
continue
cv2.circle(img_show, (int(p_x), int(p_y)), 2, color=(0, 255, 0))
cv2.putText(img_show, str(ai), (p_x, p_y + 5), font, 0.2, (0, 0, 255), 1, cv2.LINE_AA)
pts.append([p_x, p_y])
elif (ai >= 6 and ai <= 10) or(ai==57): # xiaba
cv2.circle(img_show, (int(p_x), int(p_y)), 2, color=(0, 255, 0))
cv2.putText(img_show, str(ai), (p_x, p_y + 5), font, 0.2, (0, 0, 255), 1, cv2.LINE_AA)
pts.append([p_x, p_y])
else:
continue
cv2.circle(img_show, (int(p_x), int(p_y)), 2, color=(0, 255, 0))
cv2.putText(img_show, str(ai), (p_x, p_y + 5), font, 0.2, (0, 0, 255), 1, cv2.LINE_AA)
pts.append([p_x, p_y])
# if ai>47 and ai<68:
# cv2.circle(img_show, (int(p_x), int(p_y)), 2, color=(0, 255, 0))
# cv2.putText(img_show, str(ai + 1), (p_x,p_y+5), font, 0.2, (0, 0, 255), 1, cv2.LINE_AA)
# # print(ai,p_x, p_y, round(img_tif[int(p_y)][int(p_x)] , 2))
# pts.append([p_x, p_y])
if len(pts)>2:
mask = np.zeros(img_tif.shape, np.uint8)
points = np.array(pts, np.int32)
points = points.reshape((-1, 1, 2))
mask2 = cv2.fillPoly(mask.copy(), [points], (255, 255, 255)) # 用于求 ROI
ROI=img_tif[mask2 > 0]
b = np.sum(ROI)
max_v=np.around(get_temper(max(ROI)),2)
min_v=np.around(get_temper(min(ROI)),2)
avg_v=np.around(get_temper(b/len(ROI)),2)
# print("max",max_v,"min",min_v,"avg",avg_v)
max_temp=max(max_temp,max_v)
min_temp=min(min_temp,min_v)
aaa.append(get_temper(b/len(ROI)))
gdp1 = pd.Series([img_path, max_v, min_v, avg_v, len(ROI)],index=headers)
datas.append(gdp1)
cv2.imshow("ROI", mask2)
cv2.imshow("img_show", img_show)
cv2.waitKey(1)
gdp4=pd.concat(datas,axis=1).T
gdp4.to_csv("xiaba.csv",index=False)
node_data=np.asarray(aaa)
noze_avg= np.sum(node_data)/len(node_data)
print(noze_avg,len(node_data),"max",max_temp,"min",min_temp)