Bootstrap

Caffeine缓存使用

package com.study.caffeine_cache;

import com.alibaba.fastjson.JSON;
import com.github.benmanes.caffeine.cache.*;
import com.study.domin.Airport;
import com.study.mapper.AirPortMapper;
import org.checkerframework.checker.nullness.qual.NonNull;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.util.StopWatch;
import org.springframework.util.StringUtils;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RestController;

import javax.annotation.Nullable;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.concurrent.CompletableFuture;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.TimeUnit;

/**
 * @author shengda.ji
 * @date 2019/9/23 11:56 AM
 */
@RestController
@RequestMapping("/")
public class Controller {

    @Autowired
    private AirPortMapper mapper;

    StopWatch stopWatch = new StopWatch("任务耗时");

    @GetMapping(value = "/get_all_airport")
    public List<Airport> testCustomInterface() {

        stopWatch.start("获取所有机场信息");

        List<Airport> result = mapper.getAll();

        stopWatch.stop();

        System.err.println(stopWatch.prettyPrint());

        return result;
    }


    Cache<String, String> cache = Caffeine.newBuilder()
            .expireAfterWrite(1, TimeUnit.MINUTES)
            .expireAfterAccess(1, TimeUnit.MINUTES)
            .maximumSize(10000)
            .build();

    @GetMapping(value = "/get_all_airport_cache")
    public List<Airport> testCustomInterface_Cache() {

        stopWatch.start("获取所有机场信息_cache");

        String key = "all_airport";

        // 根据key查询一个缓存,如果没有返回NULL
        String graph = cache.getIfPresent(key);

        if (StringUtils.isEmpty(graph)) {

            List<Airport> result = mapper.getAll();

            cache.put(key, JSON.toJSONString(result));

            System.out.println("————————————————————————————————————————————————没有缓存————————————————————————————————————————————————");

            stopWatch.stop();

            System.err.println(stopWatch.prettyPrint());

            return result;

        } else {
            System.out.println("——————————————————————————————————————————————————有缓存————————————————————————————————————————————————");

            stopWatch.stop();

            System.err.println(stopWatch.prettyPrint());

            return JSON.parseArray(graph, Airport.class);
        }
    }

    LoadingCache<String, List<Airport>> loadingCache = Caffeine.newBuilder()
            .maximumSize(10000)
            .expireAfterWrite(10, TimeUnit.SECONDS)
            .refreshAfterWrite(1, TimeUnit.SECONDS)
            .build(new CacheLoader<String, List<Airport>>() {
                @Nullable
                @Override
                public List<Airport> load(@NonNull String i) {
                    System.out.println("缓存里没有,load数据");
                    return mapper.getAll();
                }

                @Override
                public List<Airport> reload(@NonNull String key, @NonNull List<Airport> oldValue) {
                    System.out.println("缓存里没有,reload数据" + oldValue.size());
                    return mapper.getAll();
                }
            });

    @GetMapping(value = "/get_all_airport_loading_cache")
    public List<Airport> testCustomInterfaceLoadingCache() {

        stopWatch.start("获取所有机场信息_loading_cache");

        String key = "all_airport";

        List<Airport> result = loadingCache.get(key);

        stopWatch.stop();

        System.err.println(stopWatch.prettyPrint());

        return result;
    }


    /**
     * 和cache一样,只不过返回的CompletableFuture
     */
    AsyncLoadingCache<String, List<Airport>> asyncCache = Caffeine.newBuilder()
            .expireAfterWrite(1, TimeUnit.MINUTES)
            .expireAfterAccess(1, TimeUnit.MINUTES)
            .refreshAfterWrite(1, TimeUnit.MINUTES)
            .maximumSize(10000)
            .buildAsync(new CacheLoader<String, List<Airport>>() {
                @Nullable
                @Override
                public List<Airport> load(@NonNull String i) throws Exception {
                    System.out.println("缓存里没有,load数据");
                    return mapper.getAll();
                }

                @Override
                public List<Airport> reload(@NonNull String key, @NonNull List<Airport> oldValue) {
                    System.out.println("缓存里没有,reload数据");
                    return mapper.getAll();
                }

                @Override
                public Map<String, List<Airport>> loadAll(Iterable<? extends String> keys) {
                    Map<String, List<Airport>> map = new HashMap<>();
                    for (String i : keys) {
                        map.put(i + "1", new ArrayList<>());
                    }
                    return map;
                }
            });

    @GetMapping(value = "/get_all_airport_async_cache")
    public List<Airport> testCustomInterfaceAsyncCache() throws ExecutionException, InterruptedException {

        stopWatch.start("获取所有机场信息_async_cache");

        String key = "all_airport";

        CompletableFuture<List<Airport>> completableFuture = asyncCache.get(key);

        List<Airport> result = completableFuture.get();

        stopWatch.stop();

        System.err.println(stopWatch.prettyPrint());

        return result;
    }

}

看下结果:
结果
我的数据量是2000+条
分别说:

  • 174ms:无缓存,第一次从数据库取数据。
  • 57ms:使用cache。但是没添加缓存,准确来说也是查询数据库,但是因为mysql本身的优化,返回上次查询结果,所以较第一次少很多。
  • 2ms:明显使用到缓存 cache。
  • 30ms:和57ms同理,loading_cache内无数据,查询数据库,30ms。
  • 9ms和0ms:使用到loading_cache缓存。
  • 24ms:和57ms同理,async_cache内无数据,查询数据库,24ms。
  • 0ms:使用到async_cache缓存。
;