Bootstrap

StandardSurface shader 基础学习(一)

开启此篇章的原因: 现在都已经更新到 URP了,并且日常工作中也不会使用到Standard shader(工作中的shader都是自己人写的),之前了解过,也翻看过基本的standard shader 代码逻辑(尤其是PBR相关)。。。。

(1)之前在B站听大佬说:我认识的TA大佬,都把unity 内置的shader源码搂过一遍了。。。。。。 于是乎 我也想跟随大佬的脚步,认认真真的学习整理一遍,加深自己的记忆,也为以后忘记 迅速查找留下痕迹。。。

(2)最近由于工作需要,美术同学使用ASE 使用standard shader 连线做的shader… 需要翻译为普通的vf shader,。。。。。。于是乎,开启此系列:

此篇记录standardSurface shader 的基本结构
以及将standardSurface(后面简称 surface shader) 生成普通的vert frag shader (后面简称 vf shader)的代码:

在代码中有基本的结构注释,从 surface shader中声明的函数, 对应到 生成的 vf shader中的调用,体会达到的目的,更加深入的理解surface shader。

Shader "Custom/SurfaceShader01" {
	Properties {
		_Color ("Color", Color) = (1,1,1,1)
		_MainTex ("Albedo (RGB)", 2D) = "white" {}
	}
	SubShader {
		Tags { "RenderType"="Opaque" }
		LOD 200

		CGPROGRAM
		
		//
		// vertex: vert  第一步
		// vert  在顶点着色器中调用: 负责初始化一个 v2f_surf 的结构体

		// surf  第二步
		// 对传递进来的描述物体外表面材质属性信息的 SurfaceOutput结构体进行赋值 ,并且返回


		// BasicDiffuse  第三步
		//  在第二步的处理后,  用第二步的表面片元信息, 用BasicDiffuse 进行光照计算

		// final  第四步
		// 在最后的颜色输出之前, 对颜色进行自定义的修改,按照final 函数进行处理,并且输出返回	

		#pragma surface surf BasicDiffuse vertex:vert finalcolor: final noforwardadd
		#pragma target 3.0

		sampler2D _MainTex;
		float4 _Color;

		struct Input {
			float2 uv_MainTex;
		};
		void vert(inout appdata_full v,out Input o)
		{
			o.uv_MainTex = v.texcoord.xy;
		}


		//  下面两行是GPU Instance 所需要的声明 ,现在可以忽略删除
		// Add instancing support for this shader. You need to check 'Enable Instancing' on materials that use the shader.
		// See https://docs.unity3d.com/Manual/GPUInstancing.html for more information about instancing.
		// #pragma instancing_options assumeuniformscaling
		UNITY_INSTANCING_BUFFER_START(Props)
			// put more per-instance properties here
		// 声明改顶点是否位于视线域内,来判断这个顶点是否需要输出到frag中
		UNITY_INSTANCING_BUFFER_END(Props)


		void surf (Input IN, inout SurfaceOutput o) {
			// 只用最简单的颜色输出
			fixed4 c = tex2D (_MainTex, IN.uv_MainTex) * _Color;
			o.Albedo = c.rgb;
			o.Alpha = c.a;
		}


		//  此处的 LightingBasicDiffuse  函数的名字由两部分组成: Lighting + BasicDiffuse  
		//   BasicDiffuse  即为上面#pragma中声明的的函数
		inline float4 LightingBasicDiffuse(SurfaceOutput s,fixed3 lightDir,fixed atten)
		{
			float diffuse_term = saturate(dot(s.Normal,lightDir));
			float4 col;
			col.rgb = s.Albedo.rgb * _LightColor0.rgb * diffuse_term;
			col.a = s.Alpha;
			return col;
		}

		void final(Input IN,SurfaceOutput o,inout fixed4 color)
		{
			color = fixed4(0,1,0,1);	
		}
		ENDCG
	}
	FallBack "Diffuse"
}

在点击“show generated code” 查看vf shader 生成的具体代码:
查找上面声明函数的对应关系和具体实现的效果!!!!!
在这里插入图片描述

Shader "Custom/SurfaceShader01" {
	Properties {
		_Color ("Color", Color) = (1,1,1,1)
		_MainTex ("Albedo (RGB)", 2D) = "white" {}
	}
	SubShader {
		Tags { "RenderType"="Opaque" }
		LOD 200

		
	// ------------------------------------------------------------
	// Surface shader code generated out of a CGPROGRAM block:
	

	// ---- forward rendering base pass:
	Pass {
		Name "FORWARD"
		Tags { "LightMode" = "ForwardBase" }

CGPROGRAM
// compile directives
#pragma vertex vert_surf
#pragma fragment frag_surf
#pragma target 3.0
#pragma multi_compile_instancing
#pragma multi_compile_fog
#pragma multi_compile_fwdbase
#include "HLSLSupport.cginc"
#include "UnityShaderVariables.cginc"
#include "UnityShaderUtilities.cginc"
// -------- variant for: <when no other keywords are defined>
#if !defined(INSTANCING_ON)
// Surface shader code generated based on:
// vertex modifier: 'vert'
// writes to per-pixel normal: no
// writes to emission: no
// writes to occlusion: no
// needs world space reflection vector: no
// needs world space normal vector: no
// needs screen space position: no
// needs world space position: no
// needs view direction: no
// needs world space view direction: no
// needs world space position for lighting: no
// needs world space view direction for lighting: no
// needs world space view direction for lightmaps: no
// needs vertex color: no
// needs VFACE: no
// passes tangent-to-world matrix to pixel shader: no
// reads from normal: no
// 1 texcoords actually used
//   float2 _MainTex
#define UNITY_PASS_FORWARDBASE
#include "UnityCG.cginc"
#include "Lighting.cginc"
#include "AutoLight.cginc"

#define INTERNAL_DATA
#define WorldReflectionVector(data,normal) data.worldRefl
#define WorldNormalVector(data,normal) normal

// Original surface shader snippet:
#line 8 ""
#ifdef DUMMY_PREPROCESSOR_TO_WORK_AROUND_HLSL_COMPILER_LINE_HANDLING
#endif
/* UNITY: Original start of shader */
		
		//
		// vertex: vert  第一步
		// vert  在顶点着色器中调用: 负责初始化一个 v2f_surf 的结构体

		// surf  第二步
		// 对传递进来的描述物体外表面材质属性信息的 SurfaceOutput结构体进行赋值 ,并且返回


		// BasicDiffuse  第三步
		//  在第二步的处理后,  用第二步的表面片元信息, 用BasicDiffuse 进行光照计算

		// final  第四步
		// 在最后的颜色输出之前, 对颜色进行自定义的修改,按照final 函数进行处理,并且输出返回	

		//#pragma surface surf BasicDiffuse vertex:vert finalcolor: final noforwardadd
		//#pragma target 3.0

		sampler2D _MainTex;
		float4 _Color;

		struct Input {
			float2 uv_MainTex;
		};
		void vert(inout appdata_full v,out Input o)
		{
			o.uv_MainTex = v.texcoord.xy;
		}


		//  下面两行是GPU Instance 所需要的声明 ,现在可以忽略删除
		// Add instancing support for this shader. You need to check 'Enable Instancing' on materials that use the shader.
		// See https://docs.unity3d.com/Manual/GPUInstancing.html for more information about instancing.
		// //#pragma instancing_options assumeuniformscaling
		UNITY_INSTANCING_BUFFER_START(Props)
			// put more per-instance properties here
		// 声明改顶点是否位于视线域内,来判断这个顶点是否需要输出到frag中
		UNITY_INSTANCING_BUFFER_END(Props)


		void surf (Input IN, inout SurfaceOutput o) {
			// 只用最简单的颜色输出
			fixed4 c = tex2D (_MainTex, IN.uv_MainTex) * _Color;
			o.Albedo = c.rgb;
			o.Alpha = c.a;
		}


		//  此处的 LightingBasicDiffuse  函数的名字由两部分组成: Lighting + BasicDiffuse  
		//   BasicDiffuse  即为上面#pragma中声明的的函数
		inline float4 LightingBasicDiffuse(SurfaceOutput s,fixed3 lightDir,fixed atten)
		{
			float diffuse_term = saturate(dot(s.Normal,lightDir));
			float4 col;
			col.rgb = s.Albedo.rgb * _LightColor0.rgb * diffuse_term;
			col.a = s.Alpha;
			return col;
		}

		void final(Input IN,SurfaceOutput o,inout fixed4 color)
		{
			color = fixed4(0,1,0,1);	
		}
		

// vertex-to-fragment interpolation data
// no lightmaps:
#ifndef LIGHTMAP_ON
struct v2f_surf {
  UNITY_POSITION(pos);
  float2 pack0 : TEXCOORD0; // _MainTex
  float3 worldNormal : TEXCOORD1;
  float3 worldPos : TEXCOORD2;
  fixed3 vlight : TEXCOORD3; // ambient/SH/vertexlights
  UNITY_SHADOW_COORDS(4)
  UNITY_FOG_COORDS(5)
  #if SHADER_TARGET >= 30
  float4 lmap : TEXCOORD6;
  #endif
  UNITY_VERTEX_INPUT_INSTANCE_ID
  UNITY_VERTEX_OUTPUT_STEREO
};
#endif
// with lightmaps:
#ifdef LIGHTMAP_ON
struct v2f_surf {
  UNITY_POSITION(pos);
  float2 pack0 : TEXCOORD0; // _MainTex
  float3 worldNormal : TEXCOORD1;
  float3 worldPos : TEXCOORD2;
  float4 lmap : TEXCOORD3;
  UNITY_SHADOW_COORDS(4)
  UNITY_FOG_COORDS(5)
  #ifdef DIRLIGHTMAP_COMBINED
  float3 tSpace0 : TEXCOORD6;
  float3 tSpace1 : TEXCOORD7;
  float3 tSpace2 : TEXCOORD8;
  #endif
  UNITY_VERTEX_INPUT_INSTANCE_ID
  UNITY_VERTEX_OUTPUT_STEREO
};
#endif
float4 _MainTex_ST;

// vertex shader
v2f_surf vert_surf (appdata_full v) {
  UNITY_SETUP_INSTANCE_ID(v);
  v2f_surf o;
  UNITY_INITIALIZE_OUTPUT(v2f_surf,o);
  UNITY_TRANSFER_INSTANCE_ID(v,o);
  UNITY_INITIALIZE_VERTEX_OUTPUT_STEREO(o);
  Input customInputData;
  vert (v, customInputData);
  o.pos = UnityObjectToClipPos(v.vertex);
  o.pack0.xy = TRANSFORM_TEX(v.texcoord, _MainTex);
  float3 worldPos = mul(unity_ObjectToWorld, v.vertex).xyz;
  float3 worldNormal = UnityObjectToWorldNormal(v.normal);
  #if defined(LIGHTMAP_ON) && defined(DIRLIGHTMAP_COMBINED)
  fixed3 worldTangent = UnityObjectToWorldDir(v.tangent.xyz);
  fixed tangentSign = v.tangent.w * unity_WorldTransformParams.w;
  fixed3 worldBinormal = cross(worldNormal, worldTangent) * tangentSign;
  #endif
  #if defined(LIGHTMAP_ON) && defined(DIRLIGHTMAP_COMBINED)
  o.tSpace0 = float4(worldTangent.x, worldBinormal.x, worldNormal.x, worldPos.x);
  o.tSpace1 = float4(worldTangent.y, worldBinormal.y, worldNormal.y, worldPos.y);
  o.tSpace2 = float4(worldTangent.z, worldBinormal.z, worldNormal.z, worldPos.z);
  #endif
  o.worldPos = worldPos;
  o.worldNormal = worldNormal;
  #ifdef DYNAMICLIGHTMAP_ON
  o.lmap.zw = v.texcoord2.xy * unity_DynamicLightmapST.xy + unity_DynamicLightmapST.zw;
  #endif
  #ifdef LIGHTMAP_ON
  o.lmap.xy = v.texcoord1.xy * unity_LightmapST.xy + unity_LightmapST.zw;
  #endif

  // SH/ambient and vertex lights
  #ifndef LIGHTMAP_ON
  #if UNITY_SHOULD_SAMPLE_SH && !UNITY_SAMPLE_FULL_SH_PER_PIXEL
  float3 shlight = ShadeSH9 (float4(worldNormal,1.0));
  o.vlight = shlight;
  #else
  o.vlight = 0.0;
  #endif
  #ifdef VERTEXLIGHT_ON
  o.vlight += Shade4PointLights (
    unity_4LightPosX0, unity_4LightPosY0, unity_4LightPosZ0,
    unity_LightColor[0].rgb, unity_LightColor[1].rgb, unity_LightColor[2].rgb, unity_LightColor[3].rgb,
    unity_4LightAtten0, worldPos, worldNormal );
  #endif // VERTEXLIGHT_ON
  #endif // !LIGHTMAP_ON

  UNITY_TRANSFER_SHADOW(o,v.texcoord1.xy); // pass shadow coordinates to pixel shader
  UNITY_TRANSFER_FOG(o,o.pos); // pass fog coordinates to pixel shader
  return o;
}

// fragment shader
fixed4 frag_surf (v2f_surf IN) : SV_Target {
  UNITY_SETUP_INSTANCE_ID(IN);
  // prepare and unpack data
  Input surfIN;
  UNITY_INITIALIZE_OUTPUT(Input,surfIN);
  surfIN.uv_MainTex.x = 1.0;
  surfIN.uv_MainTex = IN.pack0.xy;
  float3 worldPos = IN.worldPos;
  #ifndef USING_DIRECTIONAL_LIGHT
    fixed3 lightDir = normalize(UnityWorldSpaceLightDir(worldPos));
  #else
    fixed3 lightDir = _WorldSpaceLightPos0.xyz;
  #endif
  #ifdef UNITY_COMPILER_HLSL
  SurfaceOutput o = (SurfaceOutput)0;
  #else
  SurfaceOutput o;
  #endif
  o.Albedo = 0.0;
  o.Emission = 0.0;
  o.Specular = 0.0;
  o.Alpha = 0.0;
  o.Gloss = 0.0;
  fixed3 normalWorldVertex = fixed3(0,0,1);
  o.Normal = IN.worldNormal;
  normalWorldVertex = IN.worldNormal;

  // call surface function
  surf (surfIN, o);

  // compute lighting & shadowing factor
  UNITY_LIGHT_ATTENUATION(atten, IN, worldPos)
  fixed4 c = 0;
  #ifndef LIGHTMAP_ON
  c.rgb += o.Albedo * IN.vlight;
  #endif // !LIGHTMAP_ON

  // lightmaps
  #ifdef LIGHTMAP_ON
    #if DIRLIGHTMAP_COMBINED
      // directional lightmaps
      fixed4 lmtex = UNITY_SAMPLE_TEX2D(unity_Lightmap, IN.lmap.xy);
      half3 lm = DecodeLightmap(lmtex);
    #else
      // single lightmap
      fixed4 lmtex = UNITY_SAMPLE_TEX2D(unity_Lightmap, IN.lmap.xy);
      fixed3 lm = DecodeLightmap (lmtex);
    #endif

  #endif // LIGHTMAP_ON


  // realtime lighting: call lighting function
  #ifndef LIGHTMAP_ON
  c += LightingBasicDiffuse (o, lightDir, atten);
  #else
    c.a = o.Alpha;
  #endif

  #ifdef LIGHTMAP_ON
    // combine lightmaps with realtime shadows
    #ifdef SHADOWS_SCREEN
      #if defined(UNITY_NO_RGBM)
      c.rgb += o.Albedo * min(lm, atten*2);
      #else
      c.rgb += o.Albedo * max(min(lm,(atten*2)*lmtex.rgb), lm*atten);
      #endif
    #else // SHADOWS_SCREEN
      c.rgb += o.Albedo * lm;
    #endif // SHADOWS_SCREEN
  #endif // LIGHTMAP_ON

  #ifdef DYNAMICLIGHTMAP_ON
  fixed4 dynlmtex = UNITY_SAMPLE_TEX2D(unity_DynamicLightmap, IN.lmap.zw);
  c.rgb += o.Albedo * DecodeRealtimeLightmap (dynlmtex);
  #endif

  UNITY_APPLY_FOG(IN.fogCoord, c); // apply fog
  UNITY_OPAQUE_ALPHA(c.a);
  return c;
}


#endif

// -------- variant for: INSTANCING_ON 
#if defined(INSTANCING_ON)
// Surface shader code generated based on:
// vertex modifier: 'vert'
// writes to per-pixel normal: no
// writes to emission: no
// writes to occlusion: no
// needs world space reflection vector: no
// needs world space normal vector: no
// needs screen space position: no
// needs world space position: no
// needs view direction: no
// needs world space view direction: no
// needs world space position for lighting: no
// needs world space view direction for lighting: no
// needs world space view direction for lightmaps: no
// needs vertex color: no
// needs VFACE: no
// passes tangent-to-world matrix to pixel shader: no
// reads from normal: no
// 1 texcoords actually used
//   float2 _MainTex
#define UNITY_PASS_FORWARDBASE
#include "UnityCG.cginc"
#include "Lighting.cginc"
#include "AutoLight.cginc"

#define INTERNAL_DATA
#define WorldReflectionVector(data,normal) data.worldRefl
#define WorldNormalVector(data,normal) normal

// Original surface shader snippet:
#line 8 ""
#ifdef DUMMY_PREPROCESSOR_TO_WORK_AROUND_HLSL_COMPILER_LINE_HANDLING
#endif
/* UNITY: Original start of shader */
		
		//
		// vertex: vert  第一步
		// vert  在顶点着色器中调用: 负责初始化一个 v2f_surf 的结构体

		// surf  第二步
		// 对传递进来的描述物体外表面材质属性信息的 SurfaceOutput结构体进行赋值 ,并且返回


		// BasicDiffuse  第三步
		//  在第二步的处理后,  用第二步的表面片元信息, 用BasicDiffuse 进行光照计算

		// final  第四步
		// 在最后的颜色输出之前, 对颜色进行自定义的修改,按照final 函数进行处理,并且输出返回	

		//#pragma surface surf BasicDiffuse vertex:vert finalcolor: final noforwardadd
		//#pragma target 3.0

		sampler2D _MainTex;
		float4 _Color;

		struct Input {
			float2 uv_MainTex;
		};
		void vert(inout appdata_full v,out Input o)
		{
			o.uv_MainTex = v.texcoord.xy;
		}


		//  下面两行是GPU Instance 所需要的声明 ,现在可以忽略删除
		// Add instancing support for this shader. You need to check 'Enable Instancing' on materials that use the shader.
		// See https://docs.unity3d.com/Manual/GPUInstancing.html for more information about instancing.
		// //#pragma instancing_options assumeuniformscaling
		UNITY_INSTANCING_BUFFER_START(Props)
			// put more per-instance properties here
		// 声明改顶点是否位于视线域内,来判断这个顶点是否需要输出到frag中
		UNITY_INSTANCING_BUFFER_END(Props)


		void surf (Input IN, inout SurfaceOutput o) {
			// 只用最简单的颜色输出
			fixed4 c = tex2D (_MainTex, IN.uv_MainTex) * _Color;
			o.Albedo = c.rgb;
			o.Alpha = c.a;
		}


		//  此处的 LightingBasicDiffuse  函数的名字由两部分组成: Lighting + BasicDiffuse  
		//   BasicDiffuse  即为上面#pragma中声明的的函数
		inline float4 LightingBasicDiffuse(SurfaceOutput s,fixed3 lightDir,fixed atten)
		{
			float diffuse_term = saturate(dot(s.Normal,lightDir));
			float4 col;
			col.rgb = s.Albedo.rgb * _LightColor0.rgb * diffuse_term;
			col.a = s.Alpha;
			return col;
		}

		void final(Input IN,SurfaceOutput o,inout fixed4 color)
		{
			color = fixed4(0,1,0,1);	
		}
		

// vertex-to-fragment interpolation data
// no lightmaps:
#ifndef LIGHTMAP_ON
struct v2f_surf {
  UNITY_POSITION(pos);
  float2 pack0 : TEXCOORD0; // _MainTex
  float3 worldNormal : TEXCOORD1;
  float3 worldPos : TEXCOORD2;
  fixed3 vlight : TEXCOORD3; // ambient/SH/vertexlights
  UNITY_SHADOW_COORDS(4)
  UNITY_FOG_COORDS(5)
  #if SHADER_TARGET >= 30
  float4 lmap : TEXCOORD6;
  #endif
  UNITY_VERTEX_INPUT_INSTANCE_ID
  UNITY_VERTEX_OUTPUT_STEREO
};
#endif
// with lightmaps:
#ifdef LIGHTMAP_ON
struct v2f_surf {
  UNITY_POSITION(pos);
  float2 pack0 : TEXCOORD0; // _MainTex
  float3 worldNormal : TEXCOORD1;
  float3 worldPos : TEXCOORD2;
  float4 lmap : TEXCOORD3;
  UNITY_SHADOW_COORDS(4)
  UNITY_FOG_COORDS(5)
  #ifdef DIRLIGHTMAP_COMBINED
  float3 tSpace0 : TEXCOORD6;
  float3 tSpace1 : TEXCOORD7;
  float3 tSpace2 : TEXCOORD8;
  #endif
  UNITY_VERTEX_INPUT_INSTANCE_ID
  UNITY_VERTEX_OUTPUT_STEREO
};
#endif
float4 _MainTex_ST;

// vertex shader
v2f_surf vert_surf (appdata_full v) {
  UNITY_SETUP_INSTANCE_ID(v);
  v2f_surf o;
  UNITY_INITIALIZE_OUTPUT(v2f_surf,o);
  UNITY_TRANSFER_INSTANCE_ID(v,o);
  UNITY_INITIALIZE_VERTEX_OUTPUT_STEREO(o);
  Input customInputData;
  vert (v, customInputData);
  o.pos = UnityObjectToClipPos(v.vertex);
  o.pack0.xy = TRANSFORM_TEX(v.texcoord, _MainTex);
  float3 worldPos = mul(unity_ObjectToWorld, v.vertex).xyz;
  float3 worldNormal = UnityObjectToWorldNormal(v.normal);
  #if defined(LIGHTMAP_ON) && defined(DIRLIGHTMAP_COMBINED)
  fixed3 worldTangent = UnityObjectToWorldDir(v.tangent.xyz);
  fixed tangentSign = v.tangent.w * unity_WorldTransformParams.w;
  fixed3 worldBinormal = cross(worldNormal, worldTangent) * tangentSign;
  #endif
  #if defined(LIGHTMAP_ON) && defined(DIRLIGHTMAP_COMBINED)
  o.tSpace0 = float4(worldTangent.x, worldBinormal.x, worldNormal.x, worldPos.x);
  o.tSpace1 = float4(worldTangent.y, worldBinormal.y, worldNormal.y, worldPos.y);
  o.tSpace2 = float4(worldTangent.z, worldBinormal.z, worldNormal.z, worldPos.z);
  #endif
  o.worldPos = worldPos;
  o.worldNormal = worldNormal;
  #ifdef DYNAMICLIGHTMAP_ON
  o.lmap.zw = v.texcoord2.xy * unity_DynamicLightmapST.xy + unity_DynamicLightmapST.zw;
  #endif
  #ifdef LIGHTMAP_ON
  o.lmap.xy = v.texcoord1.xy * unity_LightmapST.xy + unity_LightmapST.zw;
  #endif

  // SH/ambient and vertex lights
  #ifndef LIGHTMAP_ON
  #if UNITY_SHOULD_SAMPLE_SH && !UNITY_SAMPLE_FULL_SH_PER_PIXEL
  float3 shlight = ShadeSH9 (float4(worldNormal,1.0));
  o.vlight = shlight;
  #else
  o.vlight = 0.0;
  #endif
  #ifdef VERTEXLIGHT_ON
  o.vlight += Shade4PointLights (
    unity_4LightPosX0, unity_4LightPosY0, unity_4LightPosZ0,
    unity_LightColor[0].rgb, unity_LightColor[1].rgb, unity_LightColor[2].rgb, unity_LightColor[3].rgb,
    unity_4LightAtten0, worldPos, worldNormal );
  #endif // VERTEXLIGHT_ON
  #endif // !LIGHTMAP_ON

  UNITY_TRANSFER_SHADOW(o,v.texcoord1.xy); // pass shadow coordinates to pixel shader
  UNITY_TRANSFER_FOG(o,o.pos); // pass fog coordinates to pixel shader
  return o;
}

// fragment shader
fixed4 frag_surf (v2f_surf IN) : SV_Target {
  UNITY_SETUP_INSTANCE_ID(IN);
  // prepare and unpack data
  Input surfIN;
  UNITY_INITIALIZE_OUTPUT(Input,surfIN);
  surfIN.uv_MainTex.x = 1.0;
  surfIN.uv_MainTex = IN.pack0.xy;
  float3 worldPos = IN.worldPos;
  #ifndef USING_DIRECTIONAL_LIGHT
    fixed3 lightDir = normalize(UnityWorldSpaceLightDir(worldPos));
  #else
    fixed3 lightDir = _WorldSpaceLightPos0.xyz;
  #endif
  #ifdef UNITY_COMPILER_HLSL
  SurfaceOutput o = (SurfaceOutput)0;
  #else
  SurfaceOutput o;
  #endif
  o.Albedo = 0.0;
  o.Emission = 0.0;
  o.Specular = 0.0;
  o.Alpha = 0.0;
  o.Gloss = 0.0;
  fixed3 normalWorldVertex = fixed3(0,0,1);
  o.Normal = IN.worldNormal;
  normalWorldVertex = IN.worldNormal;

  // call surface function
  surf (surfIN, o);

  // compute lighting & shadowing factor
  UNITY_LIGHT_ATTENUATION(atten, IN, worldPos)
  fixed4 c = 0;
  #ifndef LIGHTMAP_ON
  c.rgb += o.Albedo * IN.vlight;
  #endif // !LIGHTMAP_ON

  // lightmaps
  #ifdef LIGHTMAP_ON
    #if DIRLIGHTMAP_COMBINED
      // directional lightmaps
      fixed4 lmtex = UNITY_SAMPLE_TEX2D(unity_Lightmap, IN.lmap.xy);
      half3 lm = DecodeLightmap(lmtex);
    #else
      // single lightmap
      fixed4 lmtex = UNITY_SAMPLE_TEX2D(unity_Lightmap, IN.lmap.xy);
      fixed3 lm = DecodeLightmap (lmtex);
    #endif

  #endif // LIGHTMAP_ON


  // realtime lighting: call lighting function
  #ifndef LIGHTMAP_ON
  c += LightingBasicDiffuse (o, lightDir, atten);
  #else
    c.a = o.Alpha;
  #endif

  #ifdef LIGHTMAP_ON
    // combine lightmaps with realtime shadows
    #ifdef SHADOWS_SCREEN
      #if defined(UNITY_NO_RGBM)
      c.rgb += o.Albedo * min(lm, atten*2);
      #else
      c.rgb += o.Albedo * max(min(lm,(atten*2)*lmtex.rgb), lm*atten);
      #endif
    #else // SHADOWS_SCREEN
      c.rgb += o.Albedo * lm;
    #endif // SHADOWS_SCREEN
  #endif // LIGHTMAP_ON

  #ifdef DYNAMICLIGHTMAP_ON
  fixed4 dynlmtex = UNITY_SAMPLE_TEX2D(unity_DynamicLightmap, IN.lmap.zw);
  c.rgb += o.Albedo * DecodeRealtimeLightmap (dynlmtex);
  #endif

  UNITY_APPLY_FOG(IN.fogCoord, c); // apply fog
  UNITY_OPAQUE_ALPHA(c.a);
  return c;
}


#endif


ENDCG

}

	// ---- meta information extraction pass:
	Pass {
		Name "Meta"
		Tags { "LightMode" = "Meta" }
		Cull Off

CGPROGRAM
// compile directives
#pragma vertex vert_surf
#pragma fragment frag_surf
#pragma target 3.0
#pragma multi_compile_instancing
#pragma skip_variants FOG_LINEAR FOG_EXP FOG_EXP2
#pragma skip_variants INSTANCING_ON
#pragma shader_feature EDITOR_VISUALIZATION

#include "HLSLSupport.cginc"
#include "UnityShaderVariables.cginc"
#include "UnityShaderUtilities.cginc"
// -------- variant for: <when no other keywords are defined>
#if !defined(INSTANCING_ON)
// Surface shader code generated based on:
// vertex modifier: 'vert'
// writes to per-pixel normal: no
// writes to emission: no
// writes to occlusion: no
// needs world space reflection vector: no
// needs world space normal vector: no
// needs screen space position: no
// needs world space position: no
// needs view direction: no
// needs world space view direction: no
// needs world space position for lighting: no
// needs world space view direction for lighting: no
// needs world space view direction for lightmaps: no
// needs vertex color: no
// needs VFACE: no
// passes tangent-to-world matrix to pixel shader: no
// reads from normal: no
// 1 texcoords actually used
//   float2 _MainTex
#define UNITY_PASS_META
#include "UnityCG.cginc"
#include "Lighting.cginc"

#define INTERNAL_DATA
#define WorldReflectionVector(data,normal) data.worldRefl
#define WorldNormalVector(data,normal) normal

// Original surface shader snippet:
#line 8 ""
#ifdef DUMMY_PREPROCESSOR_TO_WORK_AROUND_HLSL_COMPILER_LINE_HANDLING
#endif
/* UNITY: Original start of shader */
		
		//
		// vertex: vert  第一步
		// vert  在顶点着色器中调用: 负责初始化一个 v2f_surf 的结构体

		// surf  第二步
		// 对传递进来的描述物体外表面材质属性信息的 SurfaceOutput结构体进行赋值 ,并且返回


		// BasicDiffuse  第三步
		//  在第二步的处理后,  用第二步的表面片元信息, 用BasicDiffuse 进行光照计算

		// final  第四步
		// 在最后的颜色输出之前, 对颜色进行自定义的修改,按照final 函数进行处理,并且输出返回	

		//#pragma surface surf BasicDiffuse vertex:vert finalcolor: final noforwardadd
		//#pragma target 3.0

		sampler2D _MainTex;
		float4 _Color;

		struct Input {
			float2 uv_MainTex;
		};
		void vert(inout appdata_full v,out Input o)
		{
			o.uv_MainTex = v.texcoord.xy;
		}


		//  下面两行是GPU Instance 所需要的声明 ,现在可以忽略删除
		// Add instancing support for this shader. You need to check 'Enable Instancing' on materials that use the shader.
		// See https://docs.unity3d.com/Manual/GPUInstancing.html for more information about instancing.
		// //#pragma instancing_options assumeuniformscaling
		UNITY_INSTANCING_BUFFER_START(Props)
			// put more per-instance properties here
		// 声明改顶点是否位于视线域内,来判断这个顶点是否需要输出到frag中
		UNITY_INSTANCING_BUFFER_END(Props)


		void surf (Input IN, inout SurfaceOutput o) {
			// 只用最简单的颜色输出
			fixed4 c = tex2D (_MainTex, IN.uv_MainTex) * _Color;
			o.Albedo = c.rgb;
			o.Alpha = c.a;
		}


		//  此处的 LightingBasicDiffuse  函数的名字由两部分组成: Lighting + BasicDiffuse  
		//   BasicDiffuse  即为上面#pragma中声明的的函数
		inline float4 LightingBasicDiffuse(SurfaceOutput s,fixed3 lightDir,fixed atten)
		{
			float diffuse_term = saturate(dot(s.Normal,lightDir));
			float4 col;
			col.rgb = s.Albedo.rgb * _LightColor0.rgb * diffuse_term;
			col.a = s.Alpha;
			return col;
		}

		void final(Input IN,SurfaceOutput o,inout fixed4 color)
		{
			color = fixed4(0,1,0,1);	
		}
		
#include "UnityMetaPass.cginc"

// vertex-to-fragment interpolation data
struct v2f_surf {
  UNITY_POSITION(pos);
  float2 pack0 : TEXCOORD0; // _MainTex
  UNITY_VERTEX_INPUT_INSTANCE_ID
  UNITY_VERTEX_OUTPUT_STEREO
};
float4 _MainTex_ST;

// vertex shader
v2f_surf vert_surf (appdata_full v) {
  UNITY_SETUP_INSTANCE_ID(v);
  v2f_surf o;
  UNITY_INITIALIZE_OUTPUT(v2f_surf,o);
  UNITY_TRANSFER_INSTANCE_ID(v,o);
  UNITY_INITIALIZE_VERTEX_OUTPUT_STEREO(o);
  Input customInputData;
  vert (v, customInputData);
  o.pos = UnityMetaVertexPosition(v.vertex, v.texcoord1.xy, v.texcoord2.xy, unity_LightmapST, unity_DynamicLightmapST);
  o.pack0.xy = TRANSFORM_TEX(v.texcoord, _MainTex);
  float3 worldPos = mul(unity_ObjectToWorld, v.vertex).xyz;
  float3 worldNormal = UnityObjectToWorldNormal(v.normal);
  return o;
}

// fragment shader
fixed4 frag_surf (v2f_surf IN) : SV_Target {
  UNITY_SETUP_INSTANCE_ID(IN);
  // prepare and unpack data
  Input surfIN;
  UNITY_INITIALIZE_OUTPUT(Input,surfIN);
  surfIN.uv_MainTex.x = 1.0;
  surfIN.uv_MainTex = IN.pack0.xy;
  #ifdef UNITY_COMPILER_HLSL
  SurfaceOutput o = (SurfaceOutput)0;
  #else
  SurfaceOutput o;
  #endif
  o.Albedo = 0.0;
  o.Emission = 0.0;
  o.Specular = 0.0;
  o.Alpha = 0.0;
  o.Gloss = 0.0;
  fixed3 normalWorldVertex = fixed3(0,0,1);

  // call surface function
  surf (surfIN, o);
  UnityMetaInput metaIN;
  UNITY_INITIALIZE_OUTPUT(UnityMetaInput, metaIN);
  metaIN.Albedo = o.Albedo;
  metaIN.Emission = o.Emission;
  metaIN.SpecularColor = o.Specular;
  return UnityMetaFragment(metaIN);
}


#endif


ENDCG

}

	// ---- end of surface shader generated code

#LINE 74

	}
	FallBack "Diffuse"
}

;