1.train.py的使用
python train.py --weights yolov5s.py --data data/coco128.yaml
使用coco128数据集和预训练的yolov5s的模型训练自己的模型
coco128.yaml
path: D:/yolov5-master/datasets/coco128 # 必须使用绝对路径 # dataset root dir
train: images/train # train images (relative to 'path') 128 images
val:images/value # val images (relative to 'path') 128 images
test: # test images (optional)
# Classes
names:
0: person
1: bicycle
2: car
3: motorcycle
4: airplane
5: bus
6: train
7: truck
8: boat
9: traffic light
10: fire hydrant
11: stop sign
12: parking meter
13: bench
14: bird
15: cat
16: dog
17: horse
18: sheep
19: cow
20: elephant
21: bear
22: zebra
23: giraffe
24: backpack
25: umbrella
26: handbag
27: tie
28: suitcase
29: frisbee
30: skis
31: snowboard
32: sports ball
33: kite
34: baseball bat
35: baseball glove
36: skateboard
37: surfboard
38: tennis racket
39: bottle
40: wine glass
41: cup
42: fork
43: knife
44: spoon
45: bowl
46: banana
47: apple
48: sandwich
49: orange
50: broccoli
51: carrot
52: hot dog
53: pizza
54: donut
55: cake
56: chair
57: couch
58: potted plant
59: bed
60: dining table
61: toilet
62: tv
63: laptop
64: mouse
65: remote
66: keyboard
67: cell phone
68: microwave
69: oven
70: toaster
71: sink
72: refrigerator
73: book
74: clock
75: vase
76: scissors
77: teddy bear
78: hair drier
79: toothbrush
2.detect.py的使用
python detect.py --weights /runs/train/exp/weights/best.pt --data data/coco128.yaml --source data/001.jpg/ data/002.mp4 /try(文件夹,里面既可以是图片,也可以是视频)/ screen(屏幕)/ 0(摄像头)
--conf-thres 置信度(置信度越大,框越少,置信度越小,框越多)
--iou-thres IOU值
3.pytorch中使用yolo
import torch
# 使用本地的yolov5模型
model=torch.hub.load("./","yolov5s",source="local")
img="./data/001.jpg"
result=model(img)
result.show()
3.数据集的准备