Bootstrap

『paddle』paddleclas 学习笔记:分类预训练模型选择


ImageNet预训练模型库

模型库概览图

基于 ImageNet1k 分类数据集,PaddleClas 支持 35 个系列分类网络结构以及对应的 164 个图像分类预训练模型,训练技巧、每个系列网络结构的简单介绍和性能评估将在相应章节展现,下面所有的速度指标评估环境如下:

  • CPU的评估环境基于骁龙855(SD855)。
  • GPU评估环境基于 T4 机器,在 FP32+TensorRT 配置下运行 500 次测得(去除前10次的 warmup 时间)。

SSLD知识蒸馏预训练模型

基于 SSLD 知识蒸馏的预训练模型列表如下所示,更多关于SSLD知识蒸馏方案的介绍可以参考:之后增加的SSLD知识蒸馏文档

  • 服务器端知识蒸馏模型
模型Top-1 AccReference
Top-1 Acc
Acc gaintime(ms)
bs=1
time(ms)
bs=4
Flops(G)Params(M)下载地址
ResNet34_vd_ssld0.7970.7600.0372.4346.2227.3921.82下载链接
ResNet50_vd_
ssld
0.8300.7920.0393.5318.0908.6725.58下载链接
ResNet101_vd_
ssld
0.8370.8020.0356.11713.76216.144.57下载链接
Res2Net50_vd_
26w_4s_ssld
0.8310.7980.0334.5279.6578.3725.06下载链接
Res2Net101_vd_
26w_4s_ssld
0.8390.8060.0338.08717.31216.6745.22下载链接
Res2Net200_vd_
26w_4s_ssld
0.8510.8120.04914.67832.35031.4976.21下载链接
HRNet_W18_C_ssld0.8120.7690.0437.40613.2974.1421.29下载链接
HRNet_W48_C_ssld0.8360.7900.04613.70734.43534.5877.47下载链接
SE_HRNet_W64_C_ssld0.848--31.69794.99557.83128.97下载链接
  • 端侧知识蒸馏模型
模型Top-1 AccReference
Top-1 Acc
Acc gainSD855 time(ms)
bs=1
Flops(G)Params(M)模型大小(M)下载地址
MobileNetV1_
ssld
0.7790.7100.06932.5231.114.1916下载链接
MobileNetV2_
ssld
0.7670.7220.04523.3180.63.4414下载链接
MobileNetV3_
small_x0_35_ssld
0.5560.5300.0262.6350.0261.666.9下载链接
MobileNetV3_
large_x1_0_ssld
0.7900.7530.03619.3080.455.4721下载链接
MobileNetV3_small_
x1_0_ssld
0.7130.6820.0316.5460.1232.9412下载链接
GhostNet_
x1_3_ssld
0.7940.7570.03719.9830.447.329下载链接
  • 注: Reference Top-1 Acc表示 PaddleClas 基于 ImageNet1k 数据集训练得到的预训练模型精度。

ResNet 及其 Vd 系列

ResNet及其Vd系列模型的精度、速度指标如下表所示,更多关于该系列的模型介绍可以参考:ResNet及其Vd系列模型文档

模型Top-1 AccTop-5 Acctime(ms)
bs=1
time(ms)
bs=4
Flops(G)Params(M)下载地址
ResNet180.70980.89921.456063.563053.6611.69下载链接
ResNet18_vd0.72260.90801.545573.853634.1411.71下载链接
ResNet340.74570.92142.349575.898217.3621.8下载链接
ResNet34_vd0.75980.92982.434276.222577.3921.82下载链接
ResNet34_vd_ssld0.79720.94902.434276.222577.3921.82下载链接
ResNet500.76500.93003.477127.844218.1925.56下载链接
ResNet50_vc0.78350.94033.523468.107258.6725.58下载链接
ResNet50_vd0.79120.94443.531318.090578.6725.58下载链接
ResNet1010.77560.93646.0712513.4057315.5244.55下载链接
ResNet101_vd0.80170.94976.1170413.7622216.144.57下载链接
ResNet1520.78260.93968.5019819.1707323.0560.19下载链接
ResNet152_vd0.80590.95308.5437619.5215723.5360.21下载链接
ResNet200_vd0.80930.953310.8061925.0173130.5374.74下载链接
ResNet50_vd_
ssld
0.83000.96403.531318.090578.6725.58下载链接
ResNet101_vd_
ssld
0.83730.96696.1170413.7622216.144.57下载链接

移动端系列

移动端系列模型的精度、速度指标如下表所示。

模型Top-1 AccTop-5 AccSD855 time(ms)
bs=1
Flops(G)Params(M)模型大小(M)下载地址
MobileNetV1_
x0_25
0.51430.75463.219850.070.461.9下载链接
MobileNetV1_
x0_5
0.63520.84739.5795990.281.315.2下载链接
MobileNetV1_
x0_75
0.68810.882319.4363990.632.5510下载链接
MobileNetV10.70990.896832.5230481.114.1916下载链接
MobileNetV1_
ssld
0.77890.939432.5230481.114.1916下载链接
MobileNetV2_
x0_25
0.53210.76523.799250.051.56.1下载链接
MobileNetV2_
x0_5
0.65030.85728.70210.171.937.8下载链接
MobileNetV2_
x0_75
0.69830.890115.5313510.352.5810下载链接
MobileNetV20.72150.906523.3176990.63.4414下载链接
MobileNetV2_
x1_5
0.74120.916745.6238481.326.7626下载链接
MobileNetV2_
x2_0
0.75230.925874.2916492.3211.1343下载链接
MobileNetV2_
ssld
0.76740.933923.3176990.63.4414下载链接
MobileNetV3_
large_x1_25
0.76410.929528.2177010.7147.4429下载链接
MobileNetV3_
large_x1_0
0.75320.923119.308350.455.4721下载链接
MobileNetV3_
large_x0_75
0.73140.910813.56460.2963.9116下载链接
MobileNetV3_
large_x0_5
0.69240.88527.493150.1382.6711下载链接
MobileNetV3_
large_x0_35
0.64320.85465.136950.0772.18.6下载链接
MobileNetV3_
small_x1_25
0.70670.89519.27450.1953.6214下载链接
MobileNetV3_
small_x1_0
0.68240.88066.54630.1232.9412下载链接
MobileNetV3_
small_x0_75
0.66020.86335.284350.0882.379.6下载链接
MobileNetV3_
small_x0_5
0.59210.81523.351650.0431.97.8下载链接
MobileNetV3_
small_x0_35
0.53030.76372.63520.0261.666.9下载链接
MobileNetV3_
small_x0_35_ssld
0.55550.77712.63520.0261.666.9下载链接
MobileNetV3_
large_x1_0_ssld
0.78960.944819.308350.455.4721下载链接
MobileNetV3_small_
x1_0_ssld
0.71290.90106.54630.1232.9412下载链接
ShuffleNetV20.68800.884510.9410.282.269下载链接
ShuffleNetV2_
x0_25
0.49900.73792.3290.030.62.7下载链接
ShuffleNetV2_
x0_33
0.53730.77052.643350.040.642.8下载链接
ShuffleNetV2_
x0_5
0.60320.82264.26130.081.365.6下载链接
ShuffleNetV2_
x1_5
0.71630.901519.35220.583.4714下载链接
ShuffleNetV2_
x2_0
0.73150.912034.7701491.127.3228下载链接
ShuffleNetV2_
swish
0.70030.891716.0231510.292.269.1下载链接
GhostNet_
x0_5
0.66880.86955.71430.0822.610下载链接
GhostNet_
x1_0
0.74020.916513.55870.2945.220下载链接
GhostNet_
x1_3
0.75790.925419.98250.447.329下载链接
GhostNet_
x1_3_ssld
0.79380.944919.98250.447.329下载链接

SEResNeXt与Res2Net系列

SEResNeXt 与 Res2Net 系列模型的精度、速度指标如下表所示,。

模型Top-1 AccTop-5 Acctime(ms)
bs=1
time(ms)
bs=4
Flops(G)Params(M)下载地址
Res2Net50_
26w_4s
0.79330.94574.471889.657228.5225.7下载链接
Res2Net50_vd_
26w_4s
0.79750.94914.527129.932478.3725.06下载链接
Res2Net50_
14w_8s
0.79460.94705.402610.602739.0125.72下载链接
Res2Net101_vd_
26w_4s
0.80640.95228.0872917.3120816.6745.22下载链接
Res2Net200_vd_
26w_4s
0.81210.957114.6780632.3503231.4976.21下载链接
Res2Net200_vd_
26w_4s_ssld
0.85130.974214.6780632.3503231.4976.21下载链接
ResNeXt50_
32x4d
0.77750.93827.5632710.61348.0223.64下载链接
ResNeXt50_vd_
32x4d
0.79560.94627.6204411.033858.523.66下载链接
ResNeXt50_
64x4d
0.78430.941313.8096218.471215.0642.36下载链接
ResNeXt50_vd_
64x4d
0.80120.948613.9444918.8875915.5442.38下载链接
ResNeXt101_
32x4d
0.78650.941916.2150319.9656815.0141.54下载链接
ResNeXt101_vd_
32x4d
0.80330.951216.2810320.2561115.4941.56下载链接
ResNeXt101_
64x4d
0.78350.945230.478836.2980129.0578.12下载链接
ResNeXt101_vd_
64x4d
0.80780.952030.4045636.7732429.5378.14下载链接
ResNeXt152_
32x4d
0.78980.943324.8629929.3676422.0156.28下载链接
ResNeXt152_vd_
32x4d
0.80720.952025.0325830.0898722.4956.3下载链接
ResNeXt152_
64x4d
0.79510.947146.756456.3410843.03107.57下载链接
ResNeXt152_vd_
64x4d
0.81080.953447.1863857.1625743.52107.59下载链接
SE_ResNet18_vd0.73330.91381.76914.198774.1411.8下载链接
SE_ResNet34_vd0.76510.93202.885597.032917.8421.98下载链接
SE_ResNet50_vd0.79520.94754.2839310.388468.6728.09下载链接
SE_ResNeXt50_
32x4d
0.78440.93968.7412113.5638.0226.16下载链接
SE_ResNeXt50_vd_
32x4d
0.80240.94899.1713414.7619210.7626.28下载链接
SE_ResNeXt101_
32x4d
0.79390.944318.8260425.3181415.0246.28下载链接
SENet154_vd0.81400.954853.7979466.3168445.83114.29下载链接

DPN 与 DenseNet 系列

DPN 与 DenseNet 系列模型的精度、速度指标如下表所示。

模型Top-1 AccTop-5 Acctime(ms)
bs=1
time(ms)
bs=4
Flops(G)Params(M)下载地址
DenseNet1210.75660.92584.404479.326235.697.98下载链接
DenseNet1610.78570.941410.3915222.1555515.4928.68下载链接
DenseNet1690.76810.93316.4359812.988326.7414.15下载链接
DenseNet2010.77630.93668.2065217.458388.6120.01下载链接
DenseNet2640.77960.938512.1472226.2770711.5433.37下载链接
DPN680.76780.934311.6491512.828074.0310.78下载链接
DPN920.79850.948018.1574623.8754512.5436.29下载链接
DPN980.80590.951021.1819633.2392522.2258.46下载链接
DPN1070.80890.953227.6204652.6535335.0682.97下载链接
DPN1310.80700.951428.3311946.1943930.5175.36下载链接

HRNet系列

HRNet系列模型的精度、速度指标如下表所示。

模型Top-1 AccTop-5 Acctime(ms)
bs=1
time(ms)
bs=4
Flops(G)Params(M)下载地址
HRNet_W18_C0.76920.93397.4063613.297524.1421.29下载链接
HRNet_W18_C_ssld0.811620.958047.4063613.297524.1421.29下载链接
HRNet_W30_C0.78040.94029.5759417.3548516.2337.71下载链接
HRNet_W32_C0.78280.94249.4980717.7292117.8641.23下载链接
HRNet_W40_C0.78770.944712.1220225.6818425.4157.55下载链接
HRNet_W44_C0.79000.945113.1985832.2520229.7967.06下载链接
HRNet_W48_C0.78950.944213.7076134.4357234.5877.47下载链接
HRNet_W48_C_ssld0.83630.968213.7076134.4357234.5877.47下载链接
HRNet_W64_C0.79300.946117.5752747.953357.83128.06下载链接
SE_HRNet_W64_C_ssld0.84750.972631.6977094.9954657.83128.97下载链接

Inception系列

Inception 系列模型的精度、速度指标如下表所示。

模型Top-1 AccTop-5 Acctime(ms)
bs=1
time(ms)
bs=4
Flops(G)Params(M)下载地址
GoogLeNet0.70700.89661.880384.488822.888.46下载链接
Xception410.79300.94534.9693917.0136116.7422.69下载链接
Xception41_deeplab0.79550.94385.3354117.5593818.1626.73下载链接
Xception650.81000.95497.2615825.8877825.9535.48下载链接
Xception65_deeplab0.80320.94497.6020826.0369927.3739.52下载链接
Xception710.81110.95458.7245731.5554931.7737.28下载链接
InceptionV30.79140.94596.6405413.5363011.4623.83下载链接
InceptionV40.80770.952612.9934225.2341624.5742.68下载链接

EfficientNet与ResNeXt101_wsl系列

EfficientNet 与 ResNeXt101_wsl 系列模型的精度、速度指标如下表所示。

模型Top-1 AccTop-5 Acctime(ms)
bs=1
time(ms)
bs=4
Flops(G)Params(M)下载地址
ResNeXt101_
32x8d_wsl
0.82550.967418.5252834.2531929.1478.44下载链接
ResNeXt101_
32x16d_wsl
0.84240.972625.6039571.8838457.55152.66下载链接
ResNeXt101_
32x32d_wsl
0.84970.975954.87396160.04337115.17303.11下载链接
ResNeXt101_
32x48d_wsl
0.85370.976999.01698256315.91261173.58456.2下载链接
Fix_ResNeXt101_
32x48d_wsl
0.86260.9797160.0838242595.99296354.23456.2下载链接
EfficientNetB00.77380.93313.4426.114760.725.1下载链接
EfficientNetB10.79150.94415.33229.417951.277.52下载链接
EfficientNetB20.79850.94746.2935110.957021.858.81下载链接
EfficientNetB30.81150.95417.6774916.532883.4311.84下载链接
EfficientNetB40.82850.962312.1589430.945678.2918.76下载链接
EfficientNetB50.83620.967220.4857161.6025219.5129.61下载链接
EfficientNetB60.84000.968832.62402-36.2742下载链接
EfficientNetB70.84300.968953.93823-72.3564.92下载链接
EfficientNetB0_
small
0.75800.92582.30764.718860.724.65下载链接

ResNeSt 与 RegNet 系列

ResNeSt 与 RegNet 系列模型的精度、速度指标如下表所示。

模型Top-1 AccTop-5 Acctime(ms)
bs=1
time(ms)
bs=4
Flops(G)Params(M)下载地址
ResNeSt50_
fast_1s1x64d
0.80350.95283.454058.726808.6826.3下载链接
ResNeSt500.80830.95426.690428.0166410.7827.5下载链接
RegNetX_4GF0.7850.94166.4647811.19862822.1下载链接

ViT_and_DeiT 系列

ViT(Vision Transformer)与 DeiT(Data-efficient Image Transformers)系列模型的精度、速度指标如下表所示。

模型Top-1 AccTop-5 Acctime(ms)
bs=1
time(ms)
bs=4
Flops(G)Params(M)下载地址
ViT_small_
patch16_224
0.77690.9342--下载链接
ViT_base_
patch16_224
0.81950.9617--86下载链接
ViT_base_
patch16_384
0.84140.9717--下载链接
ViT_base_
patch32_384
0.81760.9613--下载链接
ViT_large_
patch16_224
0.83230.9650--307下载链接
ViT_large_
patch16_384
0.85130.9736--下载链接
ViT_large_
patch32_384
0.81530.9608--下载链接
模型Top-1 AccTop-5 Acctime(ms)
bs=1
time(ms)
bs=4
Flops(G)Params(M)下载地址
DeiT_tiny_
patch16_224
0.7180.910--5下载链接
DeiT_small_
patch16_224
0.7960.949--22下载链接
DeiT_base_
patch16_224
0.8170.957--86下载链接
DeiT_base_
patch16_384
0.8300.962--87下载链接
DeiT_tiny_
distilled_patch16_224
0.7410.918--6下载链接
DeiT_small_
distilled_patch16_224
0.8090.953--22下载链接
DeiT_base_
distilled_patch16_224
0.8310.964--87下载链接
DeiT_base_
distilled_patch16_384
0.8510.973--88下载链接

RepVGG系列

关于RepVGG系列模型的精度、速度指标如下表所示。

模型Top-1 AccTop-5 Acctime(ms)
bs=1
time(ms)
bs=4
Flops(G)Params(M)下载地址
RepVGG_A00.71310.9016下载链接
RepVGG_A10.73800.9146下载链接
RepVGG_A20.75710.9264下载链接
RepVGG_B00.74500.9213下载链接
RepVGG_B10.77730.9385下载链接
RepVGG_B20.78130.9410下载链接
RepVGG_B1g20.77320.9359下载链接
RepVGG_B1g40.76750.9335下载链接
RepVGG_B2g40.78810.9448下载链接
RepVGG_B3g40.79650.9485下载链接

MixNet系列

关于MixNet系列模型的精度、速度指标如下表所示。

模型Top-1 AccTop-5 Acctime(ms)
bs=1
time(ms)
bs=4
Flops(M)Params(M)下载地址
MixNet_S0.76280.9299252.9774.167下载链接
MixNet_M0.77670.9364357.1195.065下载链接
MixNet_L0.78600.9437579.0177.384下载链接

ReXNet系列

关于ReXNet系列模型的精度、速度指标如下表所示。

模型Top-1 AccTop-5 Acctime(ms)
bs=1
time(ms)
bs=4
Flops(G)Params(M)下载地址
ReXNet_1_00.77460.93700.4154.838下载链接
ReXNet_1_30.79130.94640.6837.611下载链接
ReXNet_1_50.80060.95120.9009.791下载链接
ReXNet_2_00.81220.95361.56116.449下载链接
ReXNet_3_00.82090.96123.44534.833下载链接

SwinTransformer系列

关于 SwinTransformer 系列模型的精度、速度指标如下表所示。

模型Top-1 AccTop-5 Acctime(ms)
bs=1
time(ms)
bs=4
Flops(G)Params(M)下载地址
SwinTransformer_tiny_patch4_window7_2240.80690.95344.528下载链接
SwinTransformer_small_patch4_window7_2240.82750.96138.750下载链接
SwinTransformer_base_patch4_window7_2240.83000.962615.488下载链接
SwinTransformer_base_patch4_window12_3840.84390.969347.188下载链接
SwinTransformer_base_patch4_window7_224[1]0.84870.974615.488下载链接
SwinTransformer_base_patch4_window12_384[1]0.86420.980747.188下载链接
SwinTransformer_large_patch4_window7_224[1]0.85960.978334.5197下载链接
SwinTransformer_large_patch4_window12_384[1]0.87190.9823103.9197下载链接
  • [1]:基于ImageNet22k数据集预训练,然后在ImageNet1k数据集迁移学习得到。

LeViT系列

关于 LeViT 系列模型的精度、速度指标如下表所示。

模型Top-1 AccTop-5 Acctime(ms)
bs=1
time(ms)
bs=4
Flops(M)Params(M)下载地址
LeViT_128S0.75980.92693057.8下载链接
LeViT_1280.78100.93714069.2下载链接
LeViT_1920.79340.944665811下载链接
LeViT_2560.80850.9497112019下载链接
LeViT_3840.81910.9551235339下载链接

:与 Reference 的精度差异源于数据预处理不同及未使用蒸馏的 head 作为输出。

Twins系列

关于 Twins 系列模型的精度、速度指标如下表所示。

模型Top-1 AccTop-5 Acctime(ms)
bs=1
time(ms)
bs=4
Flops(G)Params(M)下载地址
pcpvt_small0.80820.95523.724.1下载链接
pcpvt_base0.82420.96196.443.8下载链接
pcpvt_large0.82730.96509.560.9下载链接
alt_gvt_small0.81400.95462.824下载链接
alt_gvt_base0.82940.96218.356下载链接
alt_gvt_large0.83310.964214.899.2下载链接

:与 Reference 的精度差异源于数据预处理不同。

HarDNet系列

关于HarDNet系列模型的精度、速度指标如下表所示。

模型Top-1 AccTop-5 Acctime(ms)
bs=1
time(ms)
bs=4
Flops(G)Params(M)下载地址
HarDNet39_ds0.71330.89980.43.5下载链接
HarDNet68_ds0.73620.91520.84.2下载链接
HarDNet680.75460.92654.317.6下载链接
HarDNet850.77440.93559.136.7下载链接

DLA系列

关于 DLA 系列模型的精度、速度指标如下表所示。

模型Top-1 AccTop-5 Acctime(ms)
bs=1
time(ms)
bs=4
Flops(G)Params(M)下载地址
DLA1020.78930.94527.233.3下载链接
DLA102x20.78850.94459.341.4下载链接
DLA102x0.7810.94005.926.4下载链接
DLA1690.78090.940911.653.5下载链接
DLA340.76030.92983.115.8下载链接
DLA46_c0.63210.8530.51.3下载链接
DLA600.76100.92924.222.0下载链接
DLA60x_c0.66450.87540.61.3下载链接
DLA60x0.77530.93783.517.4下载链接

RedNet系列

关于 RedNet 系列模型的精度、速度指标如下表所示。

模型Top-1 AccTop-5 Acctime(ms)
bs=1
time(ms)
bs=4
Flops(G)Params(M)下载地址
RedNet260.75950.93191.79.2下载链接
RedNet380.77470.93562.212.4下载链接
RedNet500.78330.94172.715.5下载链接
RedNet1010.78940.94364.725.7下载链接
RedNet1520.79170.94406.834.0下载链接

TNT系列

关于 TNT 系列模型的精度、速度指标如下表所示。

模型Top-1 AccTop-5 Acctime(ms)
bs=1
time(ms)
bs=4
Flops(G)Params(M)下载地址
TNT_small0.81210.95635.223.8下载链接

:TNT模型的数据预处理部分NormalizeImage中的meanstd均为0.5。

其他模型

关于 AlexNet、SqueezeNet 系列、VGG 系列、DarkNet53 等模型的精度、速度指标如下表所示。

模型Top-1 AccTop-5 Acctime(ms)
bs=1
time(ms)
bs=4
Flops(G)Params(M)下载地址
AlexNet0.5670.7921.449932.466961.37061.090下载链接
SqueezeNet1_00.5960.8170.967362.532211.5501.240下载链接
SqueezeNet1_10.6010.8190.760321.8770.6901.230下载链接
VGG110.6930.8913.904129.5114715.090132.850下载链接
VGG130.7000.8944.6468412.6155822.480133.030下载链接
VGG160.7200.9075.6176916.4006430.810138.340下载链接
VGG190.7260.9096.6522120.433439.130143.650下载链接
DarkNet530.7800.9414.1082912.171418.58041.600下载链接
;