Bootstrap

代码随想录算法训练营第十八天|二叉树的层序遍历、226.翻转二叉树、101.对称二叉树

代码随想录算法训练营第十八天

二叉树的层序遍历

102.二叉树的层序遍历

题目链接:102.二叉树的层序遍历
创建一个队列存储节点,循环内弹出节点时,将它的子节点同时加入队列,在每层循环之前记录队列内一层节点的数量,保证弹出的时候只弹出本层节点。外层循环控制层数,内层循环控制每个节点的弹出。

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:
    vector<vector<int>> levelOrder(TreeNode* root) {
        vector<vector<int>> results;
        queue<TreeNode*> que;
        if(root!=nullptr)que.push(root);
        while(!que.empty()){
            vector<int> result;
            int size = que.size();
            for(int i = size;i>0;i--){
                auto cur = que.front();
                result.push_back(cur->val);
                que.pop();
                if(cur->left)que.push(cur->left);
                if(cur->right)que.push(cur->right);
            }
            results.push_back(result);
        }
        return results;
    }
};

107.二叉树的层次遍历II

题目链接:107.二叉树的层次遍历II
解法和第一题相同,最后需要翻转结果数组,让底层叶子结点在数组开头。

class Solution {
public:
    vector<vector<int>> levelOrderBottom(TreeNode* root) {
        vector<vector<int>> results;
        queue<TreeNode*> que;
        if (root!=nullptr)que.push(root);
        while(!que.empty()){
            vector<int> result;
            int size = que.size();
            for(int i =0;i<size;i++){
                auto cur = que.front();
                result.push_back(cur->val);
                que.pop();
                if(cur->left)que.push(cur->left);
                if(cur->right)que.push(cur->right);
            }
            results.push_back(result);
        }
        reverse(results.begin(), results.end());
        return results;
    }
};

199.二叉树的右视图

题目链接:199.二叉树的右视图
解法和第一题相同,将每层最后一个节点放入结果数组内。

class Solution {
public:
    vector<int> rightSideView(TreeNode* root) {
        vector<int> result;
        queue<TreeNode*> que;
        if(root!=nullptr)que.push(root);
        while(!que.empty()){
            int size = que.size();
            for(int i = 0;i<size;i++){
                auto cur = que.front();
                que.pop();
                if(cur->left)que.push(cur->left);
                if(cur->right)que.push(cur->right);
                if(i==size-1)result.push_back(cur->val);
            }
        }
    return result;
    }
};

637.二叉树的层平均值

题目链接:637.二叉树的层平均值
层序遍历,将每层的节点值加和最后除以节点个数。

class Solution {
public:
    vector<double> averageOfLevels(TreeNode* root) {
        vector<double> result;
        queue<TreeNode*> que;
        if (root != nullptr)
            que.push(root);
        while (!que.empty()) {
            int size = que.size();
            double sum = 0;
            for (int i = 0; i < size; i++) {
                auto cur = que.front();
                que.pop();
                if (cur->left)
                    que.push(cur->left);
                if (cur->right)
                    que.push(cur->right);
                sum+=cur->val;
            }
            result.push_back(sum/size);
        }
        return result;
    }
};

429.N叉树的层序遍历

题目链接:429.N叉树的层序遍历

/*
// Definition for a Node.
class Node {
public:
    int val;
    vector<Node*> children;

    Node() {}

    Node(int _val) {
        val = _val;
    }

    Node(int _val, vector<Node*> _children) {
        val = _val;
        children = _children;
    }
};
*/

class Solution {
public:
    vector<vector<int>> levelOrder(Node* root) {
        vector<vector<int>> results;
        queue<Node*> que;
        if (root != nullptr)
            que.push(root);
        while (!que.empty()) {
            int size = que.size();
            vector<int> result;
            for (int i = 0; i < size; i++) {
                auto cur = que.front();
                result.push_back(cur->val);
                que.pop();
                for(auto &j:cur->children){
                    que.push(j);
                }
            }
            results.push_back(result);
        }
        return results;
    }
};

515.在每个树行中找最大值

题目链接:515.在每个树行中找最大值

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left),
 * right(right) {}
 * };
 */
class Solution {
public:
    vector<int> largestValues(TreeNode* root) {
        vector<int> result;
        queue<TreeNode*> que;
        if (root != nullptr)
            que.push(root);
        while (!que.empty()) {
            int size = que.size();
            int max_val = que.front()->val;
            for (int i = 0; i < size; i++) {
                auto cur = que.front();
                que.pop();
                if (cur->left)
                    que.push(cur->left);
                if (cur->right)
                    que.push(cur->right);
                max_val = max(max_val,cur->val);
            }
            result.push_back(max_val);
        }
        return result;
    }
};

116.填充每个节点的下一个右侧节点指针

题目链接:116.填充每个节点的下一个右侧节点指针
层序遍历,将当前处理的节点的next指向栈顶,计数到本层最后一个节点将它的next置空。

/*
// Definition for a Node.
class Node {
public:
    int val;
    Node* left;
    Node* right;
    Node* next;

    Node() : val(0), left(NULL), right(NULL), next(NULL) {}

    Node(int _val) : val(_val), left(NULL), right(NULL), next(NULL) {}

    Node(int _val, Node* _left, Node* _right, Node* _next)
        : val(_val), left(_left), right(_right), next(_next) {}
};
*/
class Solution {
public:
    Node* connect(Node* root) {
        queue<Node*> que;
        if (root != nullptr)
            que.push(root);
        while (!que.empty()) {
            int size = que.size();
            for (int i = 0; i < size; i++) {
                auto cur = que.front();
                que.pop();
                if(i ==size-1) cur->next =nullptr;
                else cur->next = que.front();
                if(cur->left)que.push(cur->left);
                if(cur->right)que.push(cur->right);
            }
        }
        return root;
    }
};

117.填充每个节点的下一个右侧节点指针II

题目链接:117.填充每个节点的下一个右侧节点指针II
和上题一模一样。

/*
// Definition for a Node.
class Node {
public:
    int val;
    Node* left;
    Node* right;
    Node* next;

    Node() : val(0), left(NULL), right(NULL), next(NULL) {}

    Node(int _val) : val(_val), left(NULL), right(NULL), next(NULL) {}

    Node(int _val, Node* _left, Node* _right, Node* _next)
        : val(_val), left(_left), right(_right), next(_next) {}
};
*/
class Solution {
public:
    Node* connect(Node* root) {
             queue<Node*> que;
        if (root != nullptr)
            que.push(root);
        while (!que.empty()) {
            int size = que.size();
            for (int i = 0; i < size; i++) {
                auto cur = que.front();
                que.pop();
                if(i ==size-1) cur->next =nullptr;
                else cur->next = que.front();
                if(cur->left)que.push(cur->left);
                if(cur->right)que.push(cur->right);
            }
        }
        return root;
    }
};

104.二叉树的最大深度

题目链接:104.二叉树的最大深度
层序遍历后返回层数即可。

class Solution {
public:
    int maxDepth(TreeNode* root) {
        vector<vector<int>> results;
        queue<TreeNode*> que;
        if(root!=nullptr)que.push(root);
        while(!que.empty()){
            vector<int> result;
            int size = que.size();
            for(int i = size;i>0;i--){
                auto cur = que.front();
                result.push_back(cur->val);
                que.pop();
                if(cur->left)que.push(cur->left);
                if(cur->right)que.push(cur->right);
            }
            results.push_back(result);
        }
        return results.size();
    }
};

111.二叉树的最小深度

题目链接:111.二叉树的最小深度
层序遍历,当左右节点都为空时返回深度值为最小深度。

class Solution {
public:
    int minDepth(TreeNode* root) {
        queue<TreeNode*> que;
        int depth = 0;
        if (root != nullptr)
            que.push(root);
        while (!que.empty()) {
            vector<int> result;
            int size = que.size();
            depth++;
            for (int i = size; i > 0; i--) {
                auto cur = que.front();
                result.push_back(cur->val);
                que.pop();
                if (cur->left)
                    que.push(cur->left);
                if (cur->right)
                    que.push(cur->right);
                if (!cur->left&&!cur->right){
                    return depth;
                }
            }
        }
        return depth;
    }
};

226.翻转二叉树

题目链接:226.翻转二叉树
前序遍历,先交换中间的,然后交换左节点,最后交换右节点
递归遍历:

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:
    TreeNode* invertTree(TreeNode* root) {
        if(root ==nullptr)return root;
        swap(root->left,root->right);
        invertTree(root->left);
        invertTree(root->right);
        return root;
    }
};

迭代遍历:

class Solution {
public:
    TreeNode* invertTree(TreeNode* root) {
        stack<TreeNode*> st;
        if(root!=nullptr)st.push(root);
        while (!st.empty()){
            auto cur =st.top();
            swap(cur->left,cur->right);
            st.pop();
            if(cur->left){st.push(cur->left);}
            if(cur->right){st.push(cur->right);}
        }
        return root;
    }
};

101.对称二叉树

题目链接:101.对称二叉树
非对称的条件:
1. 左子空,右子不空
2. 左子不空,右子空
3. 左子值不等于右子值
对称条件:
1. 左子空,右子空
2. 左子值=右子值(继续循环)

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left),
 * right(right) {}
 * };
 */
class Solution {
public:
    bool compair(TreeNode* left, TreeNode* right) {
        if (left == nullptr && right != nullptr)
            return false;
        else if (left != nullptr && right == nullptr)
            return false;
        else if (left == nullptr && right == nullptr)
            return true;
        else if (left->val != right->val)
            return false;
        bool outside = compair(left->left, right->right);
        bool inside = compair(left->right, right->left);
        return outside && inside;
    }
    bool isSymmetric(TreeNode* root) {
        bool result = compair(root->left, root->right);
        return result;
    }
};

;