一、简介
1、Semaphore底层是基于AbstractQueuedSynchronizer来实现的。Semaphore称为计数信号量,它允许n个任务同时访问某个资源,可以将信号量看做是在向外分发使用资源的许可证,只有成功获取许可证,才能使用资源。
2、它也是通过内部类Sync继承了AQS,它的方法几乎都是用的AQS的,少部分重写了AQS的方法,同时,它的信号量机制是通过AQS的state属性来操作的,变更state属性使用到了CAS操作保证变量的数据一致性。
3、它的方法几乎是通过Sync类,也就是AQS实现的。
4、该类如果单独使用,不涉及到条件队列condition,使用到条件队列需要调用await方法、notify方法,notifyAll方法等一系列线程通信的方法,但是,semaphore类中不涉及到这些方法。
5、注意其中一个方法:release,这个方法是释放信号量到semaphore中,默认是释放一个。源码中作者这么说的:不要求一个线程在调用release方法释放许可前必须通过acquire方法获取到许可。正确的使用semaphore建立在应用程序里面,对许可证的使用,由程序员掌握!semaphore只是提供了一个信号量的机制供其使用。
6、核心方法都在Sync类中,外部方法都是调用的AQS和Sync中重写的AQS的方法
7、注意其中一个方法:acquire,这个方法是获取信号量从semaphore中,默认是获取一个。源码中作者这么说的:如果没有可用的许可证,则当前线程变为出于线程调度目的而禁用,并处于休眠状态,直到发生两件事之一:
a、一些其他的线程调用了release方法释放了许可,同时semaphore中的许可满足当前线程,且当前线程是下一个被分配许可证的线程
b、一些其他的线程打断了当前线程且当前线程是通过acquire方式获取许可的
二、源码分析
三个内部类
1、Sync
abstract static class Sync extends AbstractQueuedSynchronizer {
private static final long serialVersionUID = 1192457210091910933L;
//构造方法设置许可数
Sync(int permits) {
setState(permits);
}
//获取许可
final int getPermits() {
return getState();
}
//共享模式下非公平策略获取许可数
final int nonfairTryAcquireShared(int acquires) {
for (;;) { //无限循环
int available = getState();
int remaining = available - acquires;
if (remaining < 0 ||
compareAndSetState(available, remaining)) //通过CAS修改许可数
return remaining;
}
}
//共享模式下的公平策略释放许可
protected final boolean tryReleaseShared(int releases) {
for (;;) {
int current = getState();
int next = current + releases;
if (next < current) // overflow
throw new Error("Maximum permit count exceeded");
if (compareAndSetState(current, next)) //通过CAS修改许可数
return true;
}
}
//减去许可数
final void reducePermits(int reductions) {
for (;;) {
int current = getState();
int next = current - reductions;
if (next > current) // underflow
throw new Error("Permit count underflow");
if (compareAndSetState(current, next))
return;
}
}
// 获取并返回立即可用的所有许可
final int drainPermits() {
for (;;) {
int current = getState();
if (current == 0 || compareAndSetState(current, 0))
return current;
}
}
}
Sync类继承了AQS类,重写了nonfairTryAcquireShared、tryReleaseShared方法
NonfairSync和FairSync
//非公平策略
static final class NonfairSync extends Sync {
private static final long serialVersionUID = -2694183684443567898L;
NonfairSync(int permits) {
super(permits);
}
protected int tryAcquireShared(int acquires) {
return nonfairTryAcquireShared(acquires); //调用的父类Sync的方法
}
}
//公平策略
static final class FairSync extends Sync {
private static final long serialVersionUID = 2014338818796000944L;
FairSync(int permits) {
super(permits);
}
//公平策略下子类重写了方法
protected int tryAcquireShared(int acquires) {
for (;;) {
if (hasQueuedPredecessors())
return -1;
int available = getState();
int remaining = available - acquires;
if (remaining < 0 ||
compareAndSetState(available, remaining))
return remaining;
}
}
}
构造方法
public Semaphore(int permits) {
sync = new NonfairSync(permits);
}
public Semaphore(int permits, boolean fair) {
sync = fair ? new FairSync(permits) : new NonfairSync(permits);
}
常用方法
//默认获取一个许可
public void acquire() throws InterruptedException {
sync.acquireSharedInterruptibly(1);
}
//默认释放一个许可
public void release() {sync.releaseShared(1); }
//获取指定的许可数
public void acquire(int permits) throws InterruptedException {
if (permits < 0) throw new IllegalArgumentException();
sync.acquireSharedInterruptibly(permits);
}
//尝试获取指定的许可数
public boolean tryAcquire(int permits) {
if (permits < 0) throw new IllegalArgumentException();
return sync.nonfairTryAcquireShared(permits) >= 0;
}
//释放指定的许可数
public void release(int permits) {
if (permits < 0) throw new IllegalArgumentException();
sync.releaseShared(permits);
}
没啥好说的,都是套娃子模式,真正的核心方法在Sync类中以及AQS类
3、示例
package com.hust.grid.leesf.semaphore;
import java.util.concurrent.Semaphore;
class MyThread extends Thread {
private Semaphore semaphore;
public MyThread(String name, Semaphore semaphore) {
super(name);
this.semaphore = semaphore;
}
public void run() {
int count = 3;
System.out.println(Thread.currentThread().getName() + " trying to acquire");
try {
semaphore.acquire(count);
System.out.println(Thread.currentThread().getName() + " acquire successfully");
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
} finally {
semaphore.release(count);
System.out.println(Thread.currentThread().getName() + " release successfully");
}
}
}
public class SemaphoreDemo {
public final static int SEM_SIZE = 10;
public static void main(String[] args) {
Semaphore semaphore = new Semaphore(SEM_SIZE);
MyThread t1 = new MyThread("t1", semaphore);
MyThread t2 = new MyThread("t2", semaphore);
t1.start();
t2.start();
int permits = 5;
System.out.println(Thread.currentThread().getName() + " trying to acquire");
try {
semaphore.acquire(permits);
System.out.println(Thread.currentThread().getName() + " acquire successfully");
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
} finally {
semaphore.release();
System.out.println(Thread.currentThread().getName() + " release successfully");
}
}
}
说明:首先,生成一个信号量,信号量有10个许可,然后,main,t1,t2三个线程获取许可运行
首先,main线程执行acquire操作,并且成功获得许可,之后t1线程执行acquire操作,成功获得许可,之后t2执行acquire操作,由于此时许可数量不够,t2线程将会阻塞,直到许可可用。之后t1线程释放许可,main线程释放许可,此时的许可数量可以满足t2线程的要求,所以,此时t2线程会成功获得许可运行,t2运行完成后释放许可。
三、总结
1、semaphore类的核心是Sync内部类,它继承了AQS类,适当重写了一些方法,其他的方法都调用的这个Sync中的方法,包括Sync类的两个子类:FairSync和NonFairSync。
2、semaphore类中实现了公平锁FairSync和非公平锁NonFairSync。默认使用的是非公平锁。
3、对于公平锁和非公平锁,主要体现在获取锁上面是否公平。非公平锁不会判断当前线程是否为同步队列中的第一个节点,而是直接操作state属性;公平锁会判断当前线程是否为同步队列中的第一个节点,具体方法是hasQueuedPredecessors,如果不是,则返回-1,如果是,则执行下面步骤。
4、semaphore的信号量机制使用的是AQS类的state属性,默认每次获取或释放信号量都是1,除非你指定要使用的信号量或释放的信号量数。
5、对state属性的添加和释放都必须保证是原子性的,所以,semaphore类中使用的是unsafe类的compareAndSetState方法配合for(; ;)无限循环,语义为CAS自旋,来保证对state属性的操作是原子性的。