Bootstrap

Python实现经典机器学习算法(附代码+原理介绍)

在这里插入图片描述

🚨注意🚨:最近经粉丝反馈,发现有些订阅者将此专栏内容进行二次售卖,特在此声明,本专栏内容仅供学习,不得以任何方式进行售卖,未经作者许可不得对本专栏内容行使发表权、署名权、修改权、发行权、转卖权、信息网络传播权,如有违者,追究其法律责任。


前言

  • 👑 最近粉丝群中很多朋友私信咨询一些决策树、逻辑回归等机器学习相关的编程问题,为了能更清晰的说明,所以建立了本专栏 专门记录基于原生Python实现一些入门必学的机器学习算法,帮助广大零基础用户达到轻松入门,为了更深刻算法的基本原理,本专栏没有采用第三方库来实现(sklearn),而是采用原生Python自己复现相关算法,从而帮助新手理解算法的内部细节。

  • 👑 本专栏适用人群:🚨🚨🚨 机器学习初学者刚刚接触sklearn的用户群体,专栏将具体讲解如何基于原生Python来实现一些经典机器学习算法,快速让新手小白能够对机器学习算法有更深刻的理解

  • 👑 本专栏内包含基于原生Python从零实现经典机器学习算法,通过自复现帮助新手小白对算法有更深刻的认识,理论与实践相结合,每一篇文章都附带有 完整的代码+原理讲解

在这里插入图片描述

正在更新中~ ✨

在这里插入图片描述

🚨 我的项目环境:

  • 平台:Windows11
  • 语言环境:Python 3.7
  • 编译器:Jupyter Lab
  • Pandas:1.3.5
  • Numpy:1.19.3
  • Scipy:1.7.3
  • Matplotlib:3.1.3

🌠 『精品学习专栏导航帖』



🚨注:链接点不开的朋友先不要着急,文章会根据实际情况陆续公开发布

🌈『目录』


📢 经典机器学习算法篇


📢 集成算法篇


📢 最优化算法篇


📢 经典神经网络算法篇


📢 优化器篇


📢 其他算法篇


;