Bootstrap

利用Pytorch完成完整的训练套路

在前几篇已经介绍了pytorch的基础,现在完成一下完整的训练套路。由于仅作练习,所以还是选择较小的CIFAR10数据集。

 

首先准备数据集:

train_data = torchvision.datasets.CIFAR10(root='./dataset', train=True, transform=torchvision.transforms.ToTensor(),
                                         
download=True)
test_data = torchvision.datasets.CIFAR10(
root='./dataset', train=False, transform=torchvision.transforms.ToTensor(),
                                        
download=True)

可以查看一下训练集和验证集中有多少张图片:

train_data_size = len(train_data)

test_data_size = len(test_data)

print('训练数据集的长度为:{}'.format(train_data_size))

print('测试数据集的长度为:{}'.format(test_data_size))

输出结果如下:

 

利用dataloader加载数据集:

train_dataloader = DataLoader(train_data, batch_size=64)

test_dataloader = DataLoader(test_data, batch_size=64)

为使代码方便阅读与修改,新建一个文件用于编写神经网络模型:

# 搭建神经网络

import torch

from torch import nn

class Test(nn.Module):

    def __init__(self):

        super(Test, self).__init__()

        self.model = nn.Sequential(

            nn.Conv2d(in_channels=3, out_channels=32, kernel_size=5, stride=1, padding=2),

            nn.MaxPool2d(2),

            nn.Conv2d(in_channels=32, out_channels=32, kernel_size=5, padding=2, stride=1),

            nn.MaxPool2d(2),

            nn.Conv2d(in_channels=32, out_channels=64, kernel_size=5, padding=2, stride=1),

            nn.MaxPool2d(2),

            nn.Flatten(),

            nn.Linear(in_features=1024, out_features=64),

            nn.Linear(in_features=64, out_features=10)

        )



    def forward(self, x):

        x = self.model(x)

        return x





if __name__ == '__main__':

    test1 = Test()

    input = torch.ones((64, 3, 32, 32))

    output = test1(input)

    print(output.shape)

搭建网络模型的方法前面已经介绍,所以不再赘述。

在主文件中创建网络模型:

test1 = Test()

创建损失函数:

loss_fn = nn.CrossEntropyLoss()

创建优化器,学习速率设为0.01:

learning_rate = 0.01

optmizer = torch.optim.SGD(test1.parameters(), lr=learning_rate)

设置训练网络的一些参数,记录训练次数:

total_train_step = 0

记录测试次数:

total_test_step = 0

设置训练轮次:

epoch = 10

添加tensorboard:

writer = SummaryWriter('logs_train')

开始训练:

for i in range(epoch):

    print("--------第{}轮训练开始--------".format(i + 1))



    # 训练步骤开始

    test1.train()

    for data in train_dataloader:

        imgs, targets = data

        outputs = test1(imgs)

        # 计算损失值

        loss = loss_fn(outputs, targets)



        # 优化

        optmizer.zero_grad()

        loss.backward()

        optmizer.step()

        # 训练次数加一,缝百打印

        total_train_step = total_train_step + 1

        if total_train_step % 100 == 0:

            print("训练次数:{},loss:{}".format(total_train_step, loss.item()))

            writer.add_scalar("train_loss", loss.item(), total_train_step)



    # 测试步骤开始

    test1.eval()

    total_test_loss = 0

    # 匹配正确次数

    total_accuracy = 0

    with torch.no_grad():

        for data in test_dataloader:

            imgs, targets = data

            outputs = test1(imgs)

            loss = loss_fn(outputs, targets)

            # 整体测试的loss

            total_test_loss = total_test_loss + loss.item()

            accuracy = (outputs.argmax(1) == targets).sum()

            total_accuracy = total_accuracy + accuracy

    print("整体测试集上的loss:{}".format(total_test_loss))

    print("整体测试集上的正率:{}".format(total_accuracy/test_data_size))

    writer.add_scalar("test_loss", total_test_loss, total_test_step)

    writer.add_scalar("test_accuracy", total_accuracy/test_data_size, total_test_step)

    total_test_step = total_test_step + 1



    torch.save(test1, "lxw_{}.ptn".format(i))



writer.close()

输出结果如下:

上图是第一轮训练的损失值,可以看出损失值在逐渐减小。

最后一轮训练正确率明显提升。

在tensorboard中查看训练过程:

 

训练样本损失值变化如下:

 

测试样本损失值如下:

 

测试精度如下:

;