Bootstrap

matlab怎么搭建神经网络,matlab实现神经网络算法

怎样用matlab建立bp神经网络

net=train(net, p, t);把这句改成net=train(net, p', t');试试,matlab应该默认使用列向量。

或者直接使用matlab提供的图形界面取训练,在命令行输入nnstart。

谷歌人工智能写作项目:神经网络伪原创

如何用matlab构建一个三层bp神经网络模型,用于预测温度。

第0节、引例 本文以Fisher的Iris数据集作为神经网络程序的测试数据集写作猫。Iris数据集可以在 找到。

这里简要介绍一下Iris数据集:有一批Iris花,已知这批Iris花可分为3个品种,现需要对其进行分类。不同品种的Iris花的花萼长度、花萼宽度、花瓣长度、花瓣宽度会有差异。

我们现有一批已知品种的Iris花的花萼长度、花萼宽度、花瓣长度、花瓣宽度的数据。一种解决方法是用已有的数据训练一个神经网络用作分类器。

如果你只想用C#或Matlab快速实现神经网络来解决你手头上的问题,或者已经了解神经网络基本原理,请直接跳到第二节——神经网络实现。

第一节、神经网络基本原理 1. 人工神经元( Artificial Neuron )模型 人工神经元是神经网络的基本元素,其原理可以用下图表示:图1. 人工神经元模型 图中x1~xn是从其他神经元传来的输入信号,wij表示表示从神经元j到神经元i的连接权值,θ表示一个阈值 ( threshold ),或称为偏置( bias )。

则神经元i的输出与输入的关系表示为:图中 yi表示神经元i的输出,函数f称为激活函数 ( Activation Function )或转移函数 ( Transfer Function ) ,net称为净激活(net activation)。

若将阈值看成是神经元i的一个输入x0的权重wi0,则上面的式子可以简化为:若用X表示输入向量,用W表示权重向量,即:X = [ x0 , x1 , x2 , ....... , xn ]则神经元的输出可以表示

;