目录
高并发带来的问题
在微服务架构中,我们将业务拆分成一个个的服务,服务与服务之间可以相互调用,但是由于网络 原因或者自身的原因,服务并不能保证服务的100%可用,如果单个服务出现问题,调用这个服务就会 出现网络延迟,此时若有大量的网络涌入,会形成任务堆积,最终导致服务瘫痪。 接下来,我们来模拟一个高并发的场景
-
编写java代码
@Slf4j
@RestController
@RequestMapping("/order")
public class OrderController {
@Autowired
private IFeignProductService feignProductService;
@RequestMapping("/findByParameter")
public String findByParameter(String name,Double price){
log.info("服务消费者日志:name={},price={}",name,price);
return feignProductService.findByParameter(name,price);
}
}
-
修改配置文件中tomcat的并发数
1秒钟20个请求,最大连接数10,最大等待数10,最大线程数2,相当于一个线程1s能处理5个请求(2个处理10个请求)
server:
port: 8091
tomcat:
max-threads: 2 #最大线程数
max-connections: 10 #最大连接数
accept-count: 10 #最大线程等待数
-
接下来使用压测工具,对请求进行压力测试
下载地址Apache JMeter - Apache JMeter™
第一步:修改配置,并启动软件
进入bin目录,修改jmeter.properties文件中的语言支持为language=zh_CN,然后点击jmeter.bat,启动软件。
第二步:添加线程组
第三步:配置线程并发数
第四步:添加Http取样
第五步:配置取样,并启动测试
访问message方法观察效果
结论: 此时会发现, 由于order方法囤积了大量请求, 导致message方法的访问出现了问题,这就是服务雪崩的雏形。
服务雪崩效应
在分布式系统中,由于网络原因或自身的原因,服务一般无法保证 100% 可用。如果一个服务出现了 问题,调用这个服务就会出现线程阻塞的情况,此时若有大量的请求涌入,就会出现多条线程阻塞等 待,进而导致服务瘫痪。 由于服务与服务之间的依赖性,故障会传播,会对整个微服务系统造成灾难性的严重后果,这就是 服务故障的 “雪崩效应” 。
雪崩发生的原因多种多样,有不合理的容量设计,或者是高并发下某一个方法响应变慢,亦或是某 台机器的资源耗尽。我们无法完全杜绝雪崩源头的发生,只有做好足够的容错,保证在一个服务发生问 题,不会影响到其它服务的正常运行。也就是"雪落而不雪崩"。
常见容错方案
要防止雪崩的扩散,我们就要做好服务的容错,容错说白了就是保护自己不被猪队友拖垮的一些措 施, 下面介绍常见的服务容错思路和组件。 常见的容错思路 常见的容错思路有隔离、超时、限流、熔断、降级这几种,下面分别介绍一下。
-
隔离 它是指将系统按照一定的原则划分为若干个服务模块,各个模块之间相对独立,无强依赖。当有故 障发生时,能将问题和影响隔离在某个模块内部,而不扩散风险,不波及其它模块,不影响整体的 系统服务。常见的隔离方式有:线程池隔离和信号量隔离.
-
-
超时 在上游服务调用下游服务的时候,设置一个最大响应时间,如果超过这个时间,下游未作出反应, 就断开请求,释放掉线程。
-
-
限流 限流就是限制系统的输入和输出流量已达到保护系统的目的。为了保证系统的稳固运行,一旦达到 的需要限制的阈值,就需要限制流量并采取少量措施以完成限制流量的目的。
-
-
熔断 在互联网系统中,当下游服务因访问压力过大而响应变慢或失败,上游服务为了保护系统整 体的可用性,可以暂时切断对下游服务的调用。这种牺牲局部,保全整体的措施就叫做熔断。
-
服务熔断一般有三种状态:
-
熔断关闭状态(Closed) 服务没有故障时,熔断器所处的状态,对调用方的调用不做任何限制
-
熔断开启状态(Open) 后续对该服务接口的调用不再经过网络,直接执行本地的fallback方法
-
半熔断状态(Half-Open) 尝试恢复服务调用,允许有限的流量调用该服务,并监控调用成功率。如果成功率达到预 期,则说明服务已恢复,进入熔断关闭状态;如果成功率仍旧很低,则重新进入熔断关闭状 态。
-
降级 降级其实就是为服务提供一个托底方案,一旦服务无法正常调用,就使用托底方案。
-
常见的容错组件
-
Hystrix Hystrix是由Netflix开源的一个延迟和容错库,用于隔离访问远程系统、服务或者第三方库,防止 级联失败,从而提升系统的可用性与容错性。
-
Resilience4J Resilicence4J一款非常轻量、简单,并且文档非常清晰、丰富的熔断工具,这也是Hystrix官方推 荐的替代产品。不仅如此,Resilicence4j还原生支持Spring Boot 1.x/2.x,而且监控也支持和 prometheus等多款主流产品进行整合。
-
Sentinel Sentinel 是阿里巴巴开源的一款断路器实现,本身在阿里内部已经被大规模采用,非常稳定。
下面是三个组件在各方面的对比:
Sentinel | Hystrix | |
---|---|---|
隔离策略 | 信号量隔离 | 线程池隔离/信号量隔离 |
熔断降级策略 | 基于响应时间或失败比率 | 基于失败比率 |
实时指标实现 | 滑动窗口 | 滑动窗口(基于 RxJava) |
规则配置 | 支持多种数据源 | 支持多种数据源 |
扩展性 | 多个扩展点 | 插件的形式 |
基于注解的支持 | 即将支持 | 支持 |
限流 | 基于 QPS,支持基于调用关系的限流 | 不支持 |
流量整形 | 支持慢启动、匀速器模式 | 不支持 |
系统负载保护 | 支持 | 不支持 |
控制台 | 开箱即用,可配置规则、查看秒级监控、机器发现等 | 不完善 |
常见框架的适配 | Servlet、Spring Cloud、Dubbo、gRPC 等 | Servlet、Spring Cloud Netflix |
Sentinel入门
什么是Sentinel
Sentinel (分布式系统的流量防卫兵) 是阿里开源的一套用于服务容错的综合性解决方案。它以流量 为切入点, 从流量控制、熔断降级、系统负载保护等多个维度来保护服务的稳定性。 Sentinel 具有以下特征:
-
丰富的应用场景:Sentinel 承接了阿里巴巴近 10 年的双十一大促流量的核心场景, 例如秒杀(即 突发流量控制在系统容量可以承受的范围)、消息削峰填谷、集群流量控制、实时熔断下游不可用 应用等。
-
完备的实时监控:Sentinel 提供了实时的监控功能。通过控制台可以看到接入应用的单台机器秒 级数据, 甚至 500 台以下规模的集群的汇总运行情况。
-
广泛的开源生态:Sentinel 提供开箱即用的与其它开源框架/库的整合模块, 例如与 Spring Cloud、Dubbo、gRPC 的整合。只需要引入相应的依赖并进行简单的配置即可快速地接入 Sentinel。
-
完善的 SPI 扩展点:Sentinel 提供简单易用、完善的 SPI 扩展接口。您可以通过实现扩展接口来快 速地定制逻辑。例如定制规则管理、适配动态数据源等。
Sentinel 分为两个部分:
-
核心库(Java 客户端)不依赖任何框架/库,能够运行于所有 Java 运行时环境,同时对 Dubbo / Spring Cloud 等框架也有较好的支持。
-
控制台(Dashboard)基于 Spring Boot 开发,打包后可以直接运行,不需要额外的 Tomcat 等 应用容器。
微服务集成Sentinel
为微服务集成Sentinel非常简单, 只需要加入Sentinel的依赖即可 1 在订单模块(shop-order)的pom.xml中加入下面依赖
<!--sentinel-->
<dependency>
<groupId>com.alibaba.cloud</groupId>
<artifactId>spring-cloud-starter-alibaba-sentinel</artifactId>
</dependency>
网关gateway集成sentinel,需还另添加以下依赖
<dependency>
<groupId>com.alibaba.cloud</groupId>
<artifactId>spring-cloud-alibaba-sentinel-gateway</artifactId>
</dependency>
2 编写一个Controller测试使用
安装Sentinel控制台
Sentinel 提供一个轻量级的控制台, 它提供机器发现、单机资源实时监控以及规则管理等功能。 1 下载jar包,解压到文件夹 Releases · alibaba/Sentinel · GitHub 2 启动控制台
# 直接使用jar命令启动项目(控制台本身是一个SpringBoot项目)
java -Dserver.port=8080 -Dcsp.sentinel.dashboard.server=localhost:8080 -Dproject.name=sentinel-dashboard -jar sentinel-dashboard-1.7.0.jar
#参考1
java -jar sentinel-dashboard-1.8.1.jar --server.port=8080
#参考2
java -Dserver.port=8080 -Dcsp.sentinel.dashboard.server=localhost:8080 -Dproject.name=sentinel-dashboard -jar sentinel-dashboard-1.8.1.jar
3 修改shop-order ,在里面加入有关控制台的配置
spring:
cloud:
nacos:
discovery:
server-addr: localhost:8848
sentinel:
transport:
port: 9999 #跟控制台交流的端口,随意指定一个未使用的端口即可
dashboard: localhost:8080 # 指定控制台服务的地址
4 通过浏览器访问localhos