Bootstrap

铰接式车辆的横向动力学仿真提供车辆模型研究(Matlab代码实现)

 💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码实现


💥1 概述

铰接式车辆是一种具有铰接连接的多体系统,具有特殊的动力学行为。进行铰接式车辆的横向动力学仿真研究步骤如下:

1. 定义车辆模型:首先建立铰接式车辆的几何模型,并定义车辆的基本参数,如质量、惯性特性、轮胎参数等。可以使用计算机辅助设计软件(如AutoCAD)或专业的车辆仿真软件(如CarSim、ADAMS等)创建车辆的3D几何模型。

2. 车辆动力学模型:根据车辆几何模型和运动学原理,建立车辆的动力学模型。通常使用多体动力学原理描述车辆的运动,包括刚体运动学和运动学方程。可以使用拉格朗日方程或牛顿-欧拉方程等动力学方法建立车辆的运动学和动力学方程。

3. 轮胎模型:根据车辆使用的轮胎类型,选择合适的轮胎力学模型。常见的轮胎模型包括线性模型、Magic Formula模型等。根据轮胎模型的参数,计算轮胎的侧向力和纵向力。

4. 驱动和操纵控制模型:定义车辆的驱动和操纵控制系统模型,包括驱动力和转向力的输入模型。根据驾驶策略和控制算法,生成对应的引擎扭矩和转向角信号,用于驱动和操纵车辆。

5. 数值求解:设定仿真的时间步长,并使用数值方法(如欧拉法、龙格-库塔法等)对车辆的动力学方程进行求解。在每个时间步长内,使用车辆的输入模型、轮胎模型和操纵控制模型,计算车辆的状态和响应。

6. 仿真结果评估:通过分析仿真结果,得到车辆的横向动力学响应,包括车辆的侧向运动、横向力、滑移角等。评估车辆的稳定性和控制性能,分析车辆参数和控制策略对横向动力学的影响。

7. 结果解释和报告:根据仿真结果,撰写研究报告或技术论文,包括车辆的模型建立、仿真方法、参数分析和结论等。

需要指出的是,进行铰接式车辆的横向动力学仿真需要熟悉车辆动力学原理和相关仿真工具。为了获得精确和可靠的仿真结果,建议使用专业的车辆仿真软件,并根据具体的研究目的和问题,选择合适的车辆模型和控制策略进行仿真研究。

铰接式车辆,如铰接式巴士、半挂车或者某些特种工程车辆,由于其独特的结构设计(由两个或多个部分通过铰接连接组成),在行驶过程中会表现出与普通单体车辆不同的动态特性。这些特性主要体现在横向稳定性、转向响应、摇头振动(俗称“蛇行”)等方面。因此,对铰接式车辆进行横向动力学仿真是非常重要的,它有助于:

  1. 理解车辆动态行为:仿真可以揭示车辆在不同工况下(如高速行驶、急转弯、不同路面条件等)的动态响应,帮助研究人员和工程师理解车辆的稳定性和操控性。

  2. 优化设计:通过仿真,可以测试和优化车辆的各种设计参数,包括铰接机构的位置、刚度、阻尼器的参数、车辆质量分布等,以提升车辆的行驶稳定性和乘客舒适度。

  3. 减少物理试验成本:虽然实际道路测试和物理试验是必要的验证手段,但前期通过仿真可以快速筛选设计方案,减少不必要的物理样机制作和测试成本。

  4. 安全性评估:仿真技术能够预测极端情况下的车辆行为,如紧急避障、高速过弯等情况下的稳定性,为提高车辆安全性提供依据。

  5. 驾驶员辅助系统和自动驾驶技术开发:随着自动驾驶技术的发展,铰接式车辆的动力学仿真对于研发先进的车辆控制策略尤为重要,特别是路径跟踪控制、稳定性控制和驾驶辅助系统的设计与验证。

仿真通常基于多体动力学理论,利用软件工具(如ADAMS、Simulink、IPG CarMaker等)建立车辆模型,考虑轮胎-地面接触力学、悬挂系统、转向系统以及铰接部分的相互作用。模型中还会纳入各种非线性因素,比如轮胎的侧偏特性和迟滞效应,以及空气动力学影响。通过调整模型参数,模拟不同工况,分析结果,可以为铰接式车辆的性能改进和新车型开发提供有力支持。

📚2 运行结果

 

 

 

 

 

 

 

 

部分代码:

%% Maneuver
% The maneuver to be estimated by the Kalman Filter is defined here.
%
% Choosing simulation parameters:
%

T       = 6;                        % Total simulation time [s]
resol   = 50;                       % Resolution
TSPAN   = 0:T/resol:T;              % Time span             [s]
    
%%
% Running simulation.
%

simulatorPlant = Simulator(VehiclePlant, TSPAN);
simulatorPlant.dPSI0 = 0.35;
simulatorPlant.Simulate

%%
% Printing simulation parameters.
%

disp(simulatorPlant)

%%
% Retrieving states
%

XTPlant     = simulatorPlant.XT;
YTPlant     = simulatorPlant.YT;
PSIPlant    = simulatorPlant.PSI;
vTPlant     = simulatorPlant.VEL;
ALPHATPlant = simulatorPlant.ALPHAT;
dPSIPlant   = simulatorPlant.dPSI;

XOUTPlant   = [XTPlant YTPlant PSIPlant vTPlant ALPHATPlant dPSIPlant];

%%
% Generating graphics of the vehicle in the considered maneuver (plant)
%

gPlant = Graphics(simulatorPlant);
gPlant.TractorColor = 'r';
gPlant.Frame();

%%
%

close all                   % Closing figures

%% Modelo
% O modelo utilizado no algoritmo de estima玢o � baseado no mesmo modelo
% f韘ico considerado no modelo da planta. Al閙 disso, o modelo parte da
% premissa de que o projetista do estimador n鉶 tem conhecimento adequado
% da curva caracter韘tica do pneu. Logo, o modelo de ve韈ulo � igual ao
% utilizado na planta, por閙, o modelo de pneu � dado pelo modelo linear
% Tire linear, resultando num modelo do sistema de menor complexidade (em
% rela玢o � planta) e com mais hip髏eses simplificadoras.
%
% Inicializando o pneu
%

TireModel = TireLinear;
disp(TireModel)

%%
% Choosing model vehicle
%

VehicleModel        = VehicleSimpleNonlinear; % Same as plant
VehicleModel.tire   = TireModel;
disp(VehicleModel)

%%
% Simulador com o mesmo vetor TSPAN e simula玢o
%

simulatorModel = Simulator(VehicleModel, TSPAN);
simulatorModel.dPSI0 = 0.35;
simulatorModel.Simulate;

disp(simulatorModel)

%%
% Retrieving states
%

XTModel = simulatorModel.XT;
YTModel = simulatorModel.YT;
PSIModel = simulatorModel.PSI;
vTModel = simulatorModel.VEL;
ALPHATModel = simulatorModel.ALPHAT;
dPSIModel = simulatorModel.dPSI;

%%
% A manobra gerada pelo modelo escolhido pelo projetista a partir da mesma
% condi玢o inicial � ilustrada na figura a seguir
%

gModel = Graphics(simulatorModel);
gModel.TractorColor = 'g';
gModel.Frame();

%%
%

close all                   % Closing figures

%% Plant and model comparison
% Comparando o modelo de pneu
%

g       = 9.81;
FzF     = VehiclePlant.mF0*g;
FzR     = VehiclePlant.mR0*g;
muy     = VehiclePlant.muy;
nF      = VehiclePlant.nF;
nR      = VehiclePlant.nR;

alpha   = 0:0.5:15;
alpha   = alpha*pi/180;
FyLin   = - TireModel.Characteristic(alpha);
FyFPac  = - TirePlant.Characteristic(alpha, FzF, muy);
FyRPac  = - TirePlant.Characteristic(alpha, FzR, muy);

figure
ax = gca;
set(ax,'NextPlot','add','Box','on','XGrid','on','YGrid','on')
plot(alpha(1:floor(end/2))*180/pi,FyLin(1:floor(end/2)),'r')
plot(alpha*180/pi,FyFPac,'g')
plot(alpha*180/pi,FyRPac,'g--')
xlabel('alpha [deg]')
ylabel('Fy [N]')
l = legend('Linear','Pacejka F','Pacejka R');
set(l,'Location','SouthEast')

%%
% Comparando os estados

figure
ax = gca;
set(ax,'NextPlot','add','Box','on','XGrid','on','YGrid','on')
plot(TSPAN,XTPlant,'r')
plot(TSPAN,XTModel,'r--')
xlabel('Time [s]')
ylabel('Distance X [m]')

figure
ax = gca;
set(ax,'NextPlot','add','Box','on','XGrid','on','YGrid','on')
plot(TSPAN,YTPlant,'g')
plot(TSPAN,YTModel,'g--')
xlabel('Time [s]')
ylabel('Distance Y [m]')

figure
ax = gca;
set(ax,'NextPlot','add','Box','on','XGrid','on','YGrid','on')
plot(TSPAN,PSIPlant,'b')
plot(TSPAN,PSIModel,'b--')
xlabel('Time [s]')
ylabel('PSI [rad]')

figure
ax = gca;
set(ax,'NextPlot','add','Box','on','XGrid','on','YGrid','on')
plot(TSPAN,vTPlant,'c')
plot(TSPAN,vTModel,'c--')
xlabel('Time [s]')
ylabel('vT [m/s]')

figure
ax = gca;
set(ax,'NextPlot','add','Box','on','XGrid','on','YGrid','on')
plot(TSPAN,ALPHATPlant,'m'),
plot(TSPAN,ALPHATModel,'m--'),
xlabel('Time [s]')
ylabel('ALPHAT [rad/s]')

figure
ax = gca;
set(ax,'NextPlot','add','Box','on','XGrid','on','YGrid','on')
plot(TSPAN,dPSIPlant,'k')
plot(TSPAN,dPSIModel,'k--')
xlabel('Time [s]')
ylabel('dPSI [rad/s]')

%%
% Comparando a acelera玢o longitudinal e transversal

saidasPlant = [XTPlant YTPlant PSIPlant vTPlant ALPHATPlant dPSIPlant];
matDerivEstadosPlant = zeros(size(saidasPlant));
for i = 1:size(saidasPlant,1)
    auxil = simulatorPlant.Vehicle.Model(1,saidasPlant(i,:),TSPAN);
    matDerivEstadosPlant(i,:) = auxil';
end

dXTPlant = matDerivEstadosPlant(:,1);
dYTPlant = matDerivEstadosPlant(:,2);
dPSIPlant = matDerivEstadosPlant(:,3);
dvTPlant = matDerivEstadosPlant(:,4);
dALPHATPlant = matDerivEstadosPlant(:,5);
ddPSIPlant = matDerivEstadosPlant(:,6);

ddXPlant = dvTPlant.*cos(PSIPlant + ALPHATPlant) - vTPlant.*(dPSIPlant + dALPHATPlant).*sin(PSIPlant + ALPHATPlant);
ddYPlant = dvTPlant.*sin(PSIPlant + ALPHATPlant) + vTPlant.*(dPSIPlant + dALPHATPlant).*cos(PSIPlant + ALPHATPlant);

ACELNumPlant = [(ddXPlant.*cos(PSIPlant) - ddYPlant.*sin(PSIPlant))  (-ddXPlant.*sin(PSIPlant) + ddYPlant.*cos(PSIPlant))];

saidasModel = [XTModel YTModel PSIModel vTModel ALPHATModel dPSIModel];
matDerivEstadosModel = zeros(size(saidasModel));
for i = 1:size(saidasModel,1)
    auxil = simulatorModel.Vehicle.Model(1,saidasModel(i,:),TSPAN);
    matDerivEstadosModel(i,:) = auxil';
end

dXTModel = matDerivEstadosModel(:,1);
dYTModel = matDerivEstadosModel(:,2);
dPSIModel = matDerivEstadosModel(:,3);
dvTModel = matDerivEstadosModel(:,4);
dALPHATModel = matDerivEstadosModel(:,5);
ddPSIModel = matDerivEstadosModel(:,6);

ddXModel = dvTModel.*cos(PSIModel + ALPHATModel) - vTModel.*(dPSIModel + dALPHATModel).*sin(PSIModel + ALPHATModel);
ddYModel = dvTModel.*sin(PSIModel + ALPHATModel) + vTModel.*(dPSIModel + dALPHATModel).*cos(PSIModel + ALPHATModel);

ACELNumModel = [(ddXModel.*cos(PSIModel) - ddYModel.*sin(PSIModel))  (-ddXModel.*sin(PSIModel) + ddYModel.*cos(PSIModel))];

figure
ax = gca;
set(ax,'NextPlot','add','Box','on','XGrid','on','YGrid','on')
plot(TSPAN,ACELNumPlant(:,1),'r')
plot(TSPAN,ACELNumPlant(:,2),'g')
plot(TSPAN,ACELNumModel(:,1),'r--')
plot(TSPAN,ACELNumModel(:,2),'g--')
xlabel('time [s]')
ylabel('acc. [m/s]')
l = legend('AX Plant','AY Plant','AX Model','AY Model');
set(l,'Location','NorthEast')

%%

🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。

[1]农思赢.铰接式车辆与俄军北极战役集群[J].坦克装甲车辆,2022(05):56-61.DOI:10.19486/j.cnki.11-1936/tj.2022.05.003.

[2]宋广昊. 铰接式车辆紧急变道避障控制策略研究[D].吉林大学,2021.DOI:10.27162/d.cnki.gjlin.2021.001808.

[3].采用DT-30PM铰接式车辆底盘的俄罗斯“雷神”M2DT防空导弹系统[J].坦克装甲车辆,2017(11):73.

🌈4 Matlab代码实现

悦读

道可道,非常道;名可名,非常名。 无名,天地之始,有名,万物之母。 故常无欲,以观其妙,常有欲,以观其徼。 此两者,同出而异名,同谓之玄,玄之又玄,众妙之门。

;