Bootstrap

昇思25天学习打卡营第24天|GAN图像生成

有时候用来训练AI模型的内容,不一定都需要人来产生,人产生一些图片以后,也可以让AI基于这些图片自己再继续生成一些图片,训练一个生成式对抗网络,然后用AI生成的图片来训练新的AI,以经典的MNIST手写体数字集合为例,在这个的基础上,让AI继续生成一些“手写体”数字。

实现中所搭建的 GAN 模型结构与原论文中提出的 GAN 结构大致相同,但由于所用数据集 MNIST 为单通道小尺寸图片,可识别参数少,便于训练,我们在判别器和生成器中采用全连接网络架构和 ReLU 激活函数即可达到令人满意的效果,且省略了原论文中用于减少参数的 Dropout 策略和可学习激活函数 Maxout
这个模型试用的时候框架报错了,所以没有后续的效果展示。可能是mindspore这个框架还在不断地迭代中,期间可能有一些API做了更改。

;