Bootstrap

第17周 算法思想-二分搜索

算法思想-二分查找

二分查找应用场景:寻找一个数、寻找满足条件的某个区间的左侧边界、寻找满足条件的某个区间的右侧边界

建议学习:二分查找详解

二分查找的基本框架

int binarySearch(vector<int> nums, int target){
    int lo=..., hi=...;   // 初始化:搜索的边界
	while(...){           // 终止条件:区间为空时则停止搜索
        int mid = lo + (hi - lo) / 2;
        if(nums[mid] == target)   // 找到目标
            ...;
        else if(nums[mid] > target)  // 更新搜索区间
            hi = ;
        else if(nums[mid] < target)
            lo = ;
    }
    return ...;
}

在递增数组中寻找一个数(找出index,使得nums[index] == target)

int binarySearch(vector<int> nums, int target){
    int lo=0, hi=nums.size()-1;   // 搜索闭区间[0:nums.size()-1]
	while(lo <= hi){              // 终止条件:区间为空时则停止搜索,lo>hi时区间为空
        int mid = lo + (hi - lo) / 2;
        if(nums[mid] == target)   // 找到目标
			return mid;
        else if(nums[mid] > target)  // 中间值大于目标值,则说明目标值可能在[mid+1: end]中,每一步更新区间都必须缩小区间大小,否则会死循环
            hi = mid - 1; 
        else if(nums[mid] < target)  // 中间值小于目标值,则说明目标值可能在[start: mid-1]中,每一步更新区间都必须缩小区间大小,否则会死循环
            lo = mid + 1;
    }
    return -1;
}

在递增数组中寻找满足条件的的区间的左侧边界(找出最小的index使得nums[index] >= target)

int binarySearch(vector<int> nums, int target){
    int lo=0, hi=nums.size()-1;   // 搜索闭区间[0:nums.size()-1]
	while(lo <= hi){              // 终止条件:区间为空时则停止搜索,lo>hi时区间为空
        int mid = lo + (hi - lo) / 2;
       	if(nums[mid] >= target)   // 满足条件,说明index在[lo: mid]间,这里之所以还是会mid-1是为了缩小区间
            hi = mid - 1; 
        else if(nums[mid] < target)  // 不满足条件,说明index在[mid+1: hi]之间
            lo = mid + 1;
    }
    
    // 如果数组中不存在>=target的数,hi不会更新,lo会一直更新直到超过nums.size()-1(hi的初始值)
    // 如果数组中存在>target的数,nums[lo]一定满足>=target
    
    if(lo >= nums.size())  
        return -1;
    
    return lo;
}

在递增数组中寻找满足条件的区间的右侧边界(找出最大的index使得nums[index] <= target)

int binarySearch(vector<int> nums, int target){
    int lo=0, hi=nums.size()-1;   // 搜索闭区间[0:nums.size()-1]
	while(lo <= hi){              // 终止条件:区间为空时则停止搜索,lo>hi时区间为空
        int mid = lo + (hi - lo) / 2;
       	if(nums[mid] <= target)   // 满足条件,说明index在[mid: hi]间,这里之所以还是会mid+1是为了缩小区间
			lo = mid + 1;
        else if(nums[mid] > target)  // 不满足条件,说明index在[lo: mid-1]之间
            hi = mid - 1;
    }
    
    // 如果数组中不存在<=target的数,lo不会更新,hi会一直更新直到小于0(lo的初始值)
    // 如果数组中存在>target的数,nums[hi]一定满足<=target
    
    if(hi < 0)  
        return -1;
    
    return hi;
}

二分查找相关题目:

求开方

求满足条件y*y<x的最大的x

class Solution {
public:
    int mySqrt(int x) {
        if(x < 2)
            return x;
        
        long long lo = 0, hi = x;
        
        while(lo <= hi){
            long long mid = lo + (hi - lo) / 2;
            
            if(mid * mid <= x)
                lo = mid + 1;
            else if(mid * mid > x)
                hi = mid - 1;
        }
        
        return hi;
    }
};

大于给定元素的最小元素

class Solution {
public:
    char nextGreatestLetter(vector<char>& letters, char target) {
        int lo = 0, hi = letters.size()-1;
        
        while(lo <= hi){
            int mid = (lo + hi) / 2;
            if(letters[mid] > target)
                hi = mid - 1;
            else if(letters[mid] <= target)
                lo = mid + 1;
        }
        
        if(lo == letters.size())
            return letters[0];
        
        return letters[lo];
    }
};

有序数组的 Single Element

二分搜索,通过两个数中的第一个数的index的奇偶判断single element在这个数的哪一边

class Solution {
public:
    int singleNonDuplicate(vector<int>& nums) {
        int lo = 0, hi = nums.size()-1;
        
        if(nums.size() == 1)
            return nums[0];
        
        while(lo <= hi){
            int mid = (lo + hi) / 2;
            if((mid == 0 && nums[mid] != nums[mid+1]) || (mid == nums.size()-1 && nums[mid] != nums[mid-1]) || (nums[mid-1] != nums[mid] && nums[mid+1] != nums[mid]))
                return nums[mid];
            if(mid > 0 && nums[mid-1] == nums[mid])
                mid -= 1;
            if(mid % 2 == 0)
                lo = mid + 2;
            else
                hi = mid - 1;
        } 
        
        return lo;
        
    }
};

第一个错误的版本

// The API isBadVersion is defined for you.
// bool isBadVersion(int version);

class Solution {
public:
    int firstBadVersion(int n) {
        
        if(n == 1)
            return 1;
        
        int lo = 1, hi = n;
        
        while(lo <= hi){
            int mid = lo + (hi - lo) / 2;
            if(isBadVersion(mid))
                hi = mid - 1;
            else
                lo = mid + 1;
        }
        
        if(lo > n)
            return n;
        if(hi < 1)
            return 1;
        
        return lo;
        
    }
};

旋转数组的最小数字

class Solution {
public:
    int findMin(vector<int>& nums) {
        return findMinHelper(nums, 0, nums.size()-1);
    }
    
    int findMinHelper(vector<int>& nums, int left, int right){
        if(right == left)
            return nums[left];
        
        if(right == left + 1)
            return min(nums[left], nums[right]);
        
        if(nums[left] < nums[right])
            return nums[left];
        
        int mid = (left + right) / 2;
        return min(findMinHelper(nums, left, mid), findMinHelper(nums, mid, right));
    }
};

查找区间

class Solution {
public:
    vector<int> searchRange(vector<int>& nums, int target) {
        vector<int> ans(2, -1);
        
        if(nums.size() == 0)
            return ans;
        
        int lo, hi;
        
        lo = 0;
        hi = nums.size() - 1;
        while(lo <= hi){
            int mid = lo + (hi - lo) / 2;
            if(nums[mid] >= target)
                hi = mid - 1;
            else if(nums[mid] < target)
                lo = mid + 1;
        }
        
        if(lo != nums.size() && nums[lo] == target)
            ans[0] = lo;
        
        lo = 0;
        hi = nums.size() - 1;
        while(lo <= hi){
            int mid = lo + (hi - lo) / 2;
            if(nums[mid] > target)
                hi = mid - 1;
            else if(nums[mid] <= target)
                lo = mid + 1;
        }
        
        if(hi != -1 && nums[hi] == target)
            ans[1] = hi;
        
        return ans;
    }
};
;