基本技能
- 人工智能产品经理属于产品经理的一种,必须对用户、需求、商业模式有深刻的认知。
- 除此之外,人工智能产品经理还需要4项基本技能:懂数据、懂算法、会沟通、懂行业;
如图1所示。
图1 人工智能产品经理的基本技能
数据由行业产生,人工智能产品经理需要拥有敏锐的数据洞察力,这样才能在众多业务数据中梳理出有价值的数据信息;算法在没有使用场景时,只是一些数学公式,行业就是算法的使用场景,算法过程需要根据使用场景而改变,这样才能更好的服务于场景,数据是算法血液,算法中的很多参数是依靠数据训练而得到;沟通是产品经理的固有技能,人工智能产品经理的沟通需要根据自身对行业、数据、算法的理解,与开发工程师、运营人员及行业专家等不同角色进行交流,才能有效的调动资源;懂行业是做产品的基本素质,产品使用场景、商业模式都源于对行业的认知。
- 懂数据
数据是人工智能产品的基础,人工智能产品经理必须懂得如何利用数据去构建产品。懂数据经常与懂行业相伴相生,数据毕竟来源于行业,所以数据自然带有行业的一部分特征。人工智能产品经理的数据认知,主要体现在以下三个方面,如图2所示。
图2 数据认知的三个方面
(1)懂数据的业务内涵
数据业务内涵是指数据在业务中的意义。无论是做数据分析,还是做人工智能产品,首先要搞清每种数据的含义。数据通常来讲能够反应出某项业务或某类业务,模型的构建过程也是对业务关系的梳理。懂得数据业务内涵对也有有利于掌控数据标注的相关工作。
(2)懂数据属性
数据属性是指数据本身的特征。数据属性包括数据类型、数据质量等不同维度的属性。数据类型很多,有图像数据、文本数据、声音数据等,每种数据类型具有不同的分析方法与建模方法。图像数据可以采用卷积神经网络进行处理,文本数据可以采用决策树以及马尔科夫链模型进行处理。数据质量包含的内容较多,包括数据真实性、数据结构化程度、数据异常情况等。不同质量的数据处理过程也不同。大多数情况下,非结构化数据需要转化为结构化数据后才能构建模型。
(3)懂数据处理的技术与流程
- 数据处理是指将原始数据变为对特定场景下有价值、有意义的数据形式。人工智能产品经理应该掌握数据处理流程;
- 人工智能产品经理首先需要对数据进行整体评估,确定数据是否能够满足业务需求,评价数据质量等相关情况。在对数据充分认知后,才能够进行数据处理与建模工作。
- 懂算法
- 人工智能产品经理需要参与算法的设计过程,所以必须深入了解算法原理。懂算法可以更好的与算法工程师沟通,并且能够知晓不同算法的应用场景。
熟悉普通产品经理工作流程人都应该清楚,普通产品经理主要以提出需求为主,他们撰写产品需求文档提交给开发工程师,由开发工程师应按照需求文档的内容进行开发。普通产品经理的工作模式是制定一个产品开发的目标,由开发工程师去完成这个目标。普通产品经理以“目标”为导向来参与产品研发,他们制定产品功能的目标,为最终结果负责。对于具体“目标”的实现过程,普通产品经理很少参与,大部分由开发工程师完成。 - 人工智能产品经理需要懂算法,这样才能参与产品功能的实现过程。在产品开发的过程中,人工智能产品经理始终参与算法的研发,一直需要与算法工程师保持紧密的配合。人工智能产品经理需要针对行业特征进行技术预研,评估哪些算法适合产品的应用场景。算法模型的训练以及训练数据的准备工作,都需要人工智能产品经理参与。首先,人工智能产品经理会提出产品需求,在提出产品需求后,他们会帮助算法工程师寻找合适的路径去实现。人工智能产品经理不仅要撰写需求文档,还需要撰写技术文档,通过自己对技术和行业的了解,在需求与算法间建立一栋桥梁,提出最佳的算法及技术实现路径。人工智能产品经理更多的参与产品“目标”的实现过程过程,是以“过程”为导向来参与产品研发。由此可见,人工智能产品经理需要懂技术,这样才能顺利进行技术预研,并保证与算法工程师沟通顺畅。
- 基于行业特点,人工智能产品经理首先需要确定哪些是分类问题?哪些是预测问题?解决这些问题适合用什么算法?这些都需要与算法工程师深入的沟通,沟通的基础就是对算法的理解。
- 通常情况下行业问题都比较复杂,很难用单一的算法满足需求。人工智能产品经理需要探索如何组合不同的算法来满足行业需求。算法就像积木,人工智能产品经理需要根据行业需求的特点,去将算法积木搭建成相应的形状。只有人工智能产品经理懂得算法原理,才能知道如何利用算法满足行业需求。
图3 人工智能产品的算法设计路径 - 在产品构建过程中,人工智能产品经理参与算法设计的路径如图3所示。
第一步,需求确定。确认需求是一个反复的过程,首先通过自己对行业的了解提出需求,之后要通过访问行业专家或用户调研确定需求。
第二步,算法设计。算法设计考虑的维度较多,首先要将需求分解成几个部分,分析这些问题属于哪类问题。如果是文本分析问题,可以考虑使用长短时记忆神经网络解决,如果是策略规划问题,可以考虑用强化学习解决,除此之外还需要考虑数据的情况。综合以上各种情况确定使用何种算法。
第三步,算法讨论。将算法设计的思路与算法工程师讨论,共同完成算法的实施路径。
第四步,算法确认。算法达到三个要求可以认为完成了算法确认。其一,能够满足也业务要求;其二,在现有资源环境下可实施开发。当算法得到几方确认后,便可以开始实施开发。
第五步,算法验收。算法在实施过程中会有非常多问题存在,需要真正完成开发才能知道效果如何。在算法模型与真实业务系统完成对接,运营环境、运维等工作都得到确认,并确定算法模型能够达到需求之后,算法验收工作才能结束。 - 算法模型就像产品一样,同样是一个不断改进更新的循环过程。在这个过程中,伴随着硬件的升级,新模型的设计思路,甚至新业务数据的加入,算法只有不断改进才能更好的符合业务需求。
- 会沟通
人工智能产品经理作为需求、算法、项目三方的协调者与管理者,尽量采用专家方式沟通会更有效。所谓专家式沟通主要强调沟通者以专家的身份,有理有力有节的阐述观点进行沟通。人工智能产品经理与别人沟通时,需要具备以下3个特点,如图4所示。
图4 人工智能产品经理沟通要素
- 专业性是人工智能产品经理的立命之本。无论是对于行业还是对算法,以及在规划功能和设计流程时,都应该始现自己的专业性。只有突出专业性,才更容易取得信任。
条理性人工智能产品经理在一切沟通时的原则。无论什么样的沟通首先阐述结论,在阐述理由,同时说明问题的背景及相关说明。沟通时,必须做到条理清晰,阐述理由时尽量使用推理演绎的逻辑路径,能够用图表达的尽量不要用文字。 - 广博性是人工智能产品经理个人魅力体现。需要人工智能产品经理有广阔的知识面与变通能力,针对不同的沟通对象尽量使用同样的语言,或类似的思考路径进行沟通,否则很容易产生无效沟通,而浪费了大量的时间。人工智能产品经理沟通对象很多,所以需要有足够的知识储备,所以尽量做到懂算法、懂行业、懂设计、懂运营的综合人才。
- 人工智能产品经理最重要的沟通对象是算法工程师。吴恩达在NIPS 2016演讲中提到了人工智能产品经理的角色定位,强调人工智能产品经理是用户与算法人员间的桥梁。由于算法工程师并不很了解行业,如何将行业内容用算法语言描述给算法工程师是十分重要的,这种沟通我们称之为“转译”。转译就像是一个翻译过程,将不同两个领域的术语翻译给对方。人工智能产品经理进行转译时,需要注意以下几个要点:
(1)沟通行业背景
人工智能产品经理具有行业背景,与算法工程师沟通时,尽量使用对方能够听懂的语言,解释产品给行业带来的价值。首先双方应该沟通产品的行业背景,能够使算法人员对整个产品有更全面的了解,有利于代码质量的提高。
(2)说明产品价值
首先将沟通的最终目标解释给对方,让对方明白这件工作的意义。例如在与算法工程师沟通时,首先让对方明白我们需要实现产品功能是什么。在了解产品功能之后,再进行算法方面的讨论。
(3)产品功能分解
产品功能通常由很多小的功能模块组成,人工智能产品经理需要根据自己对行业的理解,将产品功能进行模块化拆分,与算法工程师针对单个模块内容进行沟通。
(4)给出数据例
数据例指的是训练数据的数据样例。人工智能产品经理需要负责数据的协调工作,应该尽快让算法工程师看到数据例,这样能节省很多沟通的时间。即使现在没有足够的数据,数据的基本情况也要尽快与算法工程师沟通。
(5)提供算法方案
人工智能产品经理需要进行技术预研,应该首先提出一套算法方案用于和算法工程师交流。该算法方案包括建议使用的算法类型、数据处理方案等。这样可以就具体的算法路径进行讨论,提高了沟通的效率。
十种AI常用算法
-
决策树
根据一些 feature 进行分类,每个节点提一个问题,通过判断,将数据分为两类,再继续提问。这些问题是根据已有数据学习出来的,再投入新数据的时候,就可以根据这棵树上的问题,将数据划分到合适的叶子上。
-
随机森林
在源数据中随机选取数据,组成几个子集
S 矩阵是源数据,有 1-N 条数据,A B C 是feature,最后一列C是类别
由 S 随机生成 M 个子矩阵
这 M 个子集得到 M 个决策树
将新数据投入到这 M 个树中,得到 M 个分类结果,计数看预测成哪一类的数目最多,就将此类别作为最后的预测结果
-
逻辑回归
当预测目标是概率这样的,值域需要满足大于等于0,小于等于1的,这个时候单纯的线性模型是做不到的,因为在定义域不在某个范围之内时,值域也超出了规定区间。
所以此时需要这样的形状的模型会比较好
那么怎么得到这样的模型呢?
这个模型需要满足两个条件 大于等于0,小于等于1
大于等于0 的模型可以选择 绝对值,平方值,这里用 指数函数,一定大于0
小于等于1 用除法,分子是自己,分母是自身加上1,那一定是小于1的了
再做一下变形,就得到了 logistic regression 模型
通过源数据计算可以得到相应的系数了
最后得到 logistic 的图形
-
SVM
support vector machine
要将两类分开,想要得到一个超平面,最优的超平面是到两类的 margin 达到最大,margin就是超平面与离它最近一点的距离,如下图,Z2>Z1,所以绿色的超平面比较好
将这个超平面表示成一个线性方程,在线上方的一类,都大于等于1,另一类小于等于-1
点到面的距离根据图中的公式计算
所以得到 total margin 的表达式如下,目标是最大化这个 margin,就需要最小化分母,于是变成了一个优化问题
举个栗子,三个点,找到最优的超平面,定义了 weight vector=(2,3)-(1,1)
得到 weight vector 为(a,2a),将两个点代入方程,代入(2,3)另其值=1,代入(1,1)另其值=-1,求解出 a 和 截矩 w0 的值,进而得到超平面的表达式。
a 求出来后,代入(a,2a)得到的就是 support vector
a 和 w0 代入超平面的方程就是 support vector machine -
朴素贝叶斯
举个在 NLP 的应用
给一段文字,返回情感分类,这段文字的态度是positive,还是negative
为了解决这个问题,可以只看其中的一些单词
这段文字,将仅由一些单词和它们的计数代表
原始问题是:给你一句话,它属于哪一类
通过 bayes rules 变成一个比较简单容易求得的问题
问题变成,这一类中这句话出现的概率是多少,当然,别忘了公式里的另外两个概率
栗子:单词 love 在 positive 的情况下出现的概率是 0.1,在 negative 的情况下出现的概率是 0.001
-
K最近邻
k nearest neighbours
给一个新的数据时,离它最近的 k 个点中,哪个类别多,这个数据就属于哪一类
栗子:要区分 猫 和 狗,通过 claws 和 sound 两个feature来判断的话,圆形和三角形是已知分类的了,那么这个 star 代表的是哪一类呢
k=3时,这三条线链接的点就是最近的三个点,那么圆形多一些,所以这个star就是属于猫
-
K均值
想要将一组数据,分为三类,粉色数值大,黄色数值小
最开心先初始化,这里面选了最简单的 3,2,1 作为各类的初始值
剩下的数据里,每个都与三个初始值计算距离,然后归类到离它最近的初始值所在类别
分好类后,计算每一类的平均值,作为新一轮的中心点
几轮之后,分组不再变化了,就可以停止了
-
Adaboost
adaboost 是 bosting 的方法之一
bosting就是把若干个分类效果并不好的分类器综合起来考虑,会得到一个效果比较好的分类器。
下图,左右两个决策树,单个看是效果不怎么好的,但是把同样的数据投入进去,把两个结果加起来考虑,就会增加可信度
adaboost 的栗子,手写识别中,在画板上可以抓取到很多 features,例如 始点的方向,始点和终点的距离等等
training 的时候,会得到每个 feature 的 weight,例如 2 和 3 的开头部分很像,这个 feature 对分类起到的作用很小,它的权重也就会较小
而这个 alpha 角 就具有很强的识别性,这个 feature 的权重就会较大,最后的预测结果是综合考虑这些 feature 的结果
-
神经网络
Neural Networks 适合一个input可能落入至少两个类别里
NN 由若干层神经元,和它们之间的联系组成
第一层是 input 层,最后一层是 output 层
在 hidden 层 和 output 层都有自己的 classifier
input 输入到网络中,被激活,计算的分数被传递到下一层,激活后面的神经层,最后output 层的节点上的分数代表属于各类的分数,下图例子得到分类结果为 class 1
同样的 input 被传输到不同的节点上,之所以会得到不同的结果是因为各自节点有不同的weights 和 bias
这也就是 forward propagation
-
马尔可夫
Markov Chains 由 state 和 transitions 组成
栗子,根据这一句话 ‘the quick brown fox jumps over the lazy dog’,要得到 markov chain
步骤,先给每一个单词设定成一个状态,然后计算状态间转换的概率
这是一句话计算出来的概率,当你用大量文本去做统计的时候,会得到更大的状态转移矩阵,例如 the 后面可以连接的单词,及相应的概率
生活中,键盘输入法的备选结果也是一样的原理,模型会更高级
如何学习大模型
现在社会上大模型越来越普及了,已经有很多人都想往这里面扎,但是却找不到适合的方法去学习。
作为一名资深码农,初入大模型时也吃了很多亏,踩了无数坑。现在我想把我的经验和知识分享给你们,帮助你们学习AI大模型,能够解决你们学习中的困难。
我已将重要的AI大模型资料包括市面上AI大模型各大白皮书、AGI大模型系统学习路线、AI大模型视频教程、实战学习,等录播视频免费分享出来,需要的小伙伴可以扫取。
一、AGI大模型系统学习路线
很多人学习大模型的时候没有方向,东学一点西学一点,像只无头苍蝇乱撞,我下面分享的这个学习路线希望能够帮助到你们学习AI大模型。
二、AI大模型视频教程
三、AI大模型各大学习书籍
四、AI大模型各大场景实战案例
五、结束语
学习AI大模型是当前科技发展的趋势,它不仅能够为我们提供更多的机会和挑战,还能够让我们更好地理解和应用人工智能技术。通过学习AI大模型,我们可以深入了解深度学习、神经网络等核心概念,并将其应用于自然语言处理、计算机视觉、语音识别等领域。同时,掌握AI大模型还能够为我们的职业发展增添竞争力,成为未来技术领域的领导者。
再者,学习AI大模型也能为我们自己创造更多的价值,提供更多的岗位以及副业创收,让自己的生活更上一层楼。
因此,学习AI大模型是一项有前景且值得投入的时间和精力的重要选择。