🎬 毕设灵感——“基于知识图谱的电影推荐系统”🚀
👉 如果你的毕业设计还没有灵感,那么这个基于知识图谱的电影推荐系统绝对值得参考!这不是普通的推荐系统,而是通过知识图谱+大数据的结合,来为用户推荐更个性化的电影体验。它综合了用户的行为数据和电影内容,解决了冷门电影无从下手的难题,也让我们上午还在为电影发愁,下午就能看到心仪的影片。
💡 功能亮点
- 智能推荐:基于协同过滤算法自动识别用户喜好,为每位用户量身定制电影推荐,特别适合那些一时选择困难的小伙伴!
- 知识图谱展示:后端通过Neo4j存储电影数据,并用py2neo库与前端echarts图谱可视化展示无缝对接,用户可在图谱上直观查看如何推荐出的影片。
- 强悍的爬虫技术:内置人人都爱的"数据爬虫",轻松爬取豆瓣Top 250电影,让内容保持持续更新。
👨💻 技术细节
- 系统后端基于Django Web框架,SQLite用于常规数据存储,Neo4j则处理电影与用户数据的关系图谱。
- 协同过滤算法 + 知识图谱的交互应用,让系统既能处理静态数据,也能提供更具参考意义的推荐方案。
- 管理员功能齐全,可以对用户、电影数据进行维护与管理,为系统的长期稳定运行提供了保障。
✨ 设计优势:
- 高度自动化,自动分析用户历史行为,生成个性化的推荐内容。
- 使用图数据库Neo4j+py2neo打造动态数据推荐,更灵活、更智能。
- 系统可以作为毕业设计项目,技术难度适中,适合学习Django框架和大数据分析的同学。
如果你的专业涉及人工智能、图数据库或推荐算法,这个项目能够很好满足毕业设计的难度要求,也能让你充分展示全文融合多技术栈的能力!💪